The ’Vi Improved’ Text Editor

44

annoying but excellent

Contents

1 Web Resources
1.1 Tips
1.2 Cheat Sheets

2 The Crash Course
2.1 Tips

3 Getting Help

4 The Vim Annoyances

4.1 Traps.o

Opening Files To Edit

Editing Multiple Files

7 Vim Tabs
7.1 Opening Files In Tabs
7.2 Closing Tabs.
7.3 Switching Tabs
7.4 Editing In Multiple Windows
7.5 Transfering Text From One File To An-

other

8 Editing Remote Files
8.1 Editing A Wiki With Lynx And Vim . .
8.2 Editing With Encryption

9 Saving Files
9.1 Saving Chunks Of Files

10 Filename Modifiers

11 Vim Patterns

12 Ex Commands
12.1 Inserting Text With Ex
12.2 Moving Text With Ex
12.3 Deleting With Ex
12.4 Copying With Ex
12.5 Reformatting Lines With Ex
12.6 The Ex Global Command
12.7 The Command History

13 Searching For Text

14 Search And Replace
14.1 Uppercase And Lowercase

15 Text Indentation
15.1 Automatic Indentation
15.2 Manual Indentation
15.3 My Favourite Settings

16 Working With Text Data
16.1 Sorting Text
16.2 Csv Data Files

17 Filtering Text

18 Reformatting Text

19 Moving Around

20 Refering To Chunks Of Text
20.1 Text Objects

21 Inserting

22 Inserting From The Web

(=2 I

IO OO O TUR W W W WN

© © © W ow W 3 I

Ne)

21

23
24

24
1

77
DAVID RAYNER

22.1 Inserting A File Into Itself
22.2 Random Text

23 Deleting

24 Editing
24.1 Repeating Edits
24.2 The Edit Changes List

25 Cut Copy And Paste

26 Registers
26.1 Appending Text To The Registers
26.2 Pasting Registers
26.3 The Numeric Registers
26.4 Executing Registers

27 Text Information

28 Spell Checking

29 Configuring Vim
29.1 The Configuration File

30 Folding Text
30.1 Getting Help
30.2 Basic Usage
30.3 Moving Between Folds
30.4 Creating Folds Automatically
30.5 Advanced Folds

31 Working With Source Code
31.1 Indenting And Formatting
31.2 Syntax Highlighting
31.3 Converting Highlighted Syntax To Html
31.4 C And Cpp
31.5 Java

32 Vim And Html

33 Vim And Latex

34 Using The Shell
34.1 Vim In Batch Mode
34.2 Piping Text Fragments
34.3 Gotchas

35 Using External Programs

36 Switching Between Modes

37 Visual Mode

38 Vim Sessions

39 Command Mappings
39.1 Using Functions In Mappings
39.2 Example Mappings

40 Abbreviations

41 Creating New Commands
41.1 With Arguments
41.2 With Line Ranges
41.3 Commands Using Commands
41.4 Commands And Mappings

42 Recording And Using Macros

43 Vim Functions

43.1 Creating New Functions 43 47.6 Changing List Items 45

44 Vim Programming 43 48 Dictionaries 45
44.1 Variable Assignment 43 49 If Tests 45

45 Vim Functions 43 50 Exe Or Eval 45

46 String Variables 44 50.1 Loops 46

47 Array Variables 44 51 Other Stuff 46
47.1 Get Help For Lists 44 52 Rayninfo 46
47.2 List Information 44 53 Using Microsoft Crippleware 53
47.3 Creating Lists 44 54 Vim People 54
47.4 Getting Elements From Lists 44 55 Information Sources 54
47.5 Joining Lists Together 45

Vim is an editor which proves frustrating to use at first (and later...) but which is capable of editing text rapidly
with very few keystrokes. For example the keystrokes 'dap’ deletes the current paragraph (and copies it to the
clipboard, so it can be pasted later). Vim is especially designed for people who can type without looking at the
keyboard....

Section 1
Web Resources w

WWW.Vim.org
the official site
http://en.wikibooks.org/wiki/Learning_the_vi_editor/
another book

1.1 Tips

http://vim.runpaint.org/toc/
good advanced tips, with explanations
www.vim.org/tips/index.php
lots of tips
http://vim.wikia.com/wiki/Main_Page
more tips
http://rayninfo.co.uk/vimtips.html
advanced tips

1.2 Cheat Sheets

http://www.eec.com/business/vi.html

Section 2
The Crash Course w

The most important thing to know about vim, is that it has 2 (main) modes: 'Normal’ mode and 'Insert’ mode.
In normal mode you can’t type anything!!! Thereby leading the novice to a great deal of confusion, perplexity
and desperation. In order to start entering text in the editor, you have to type ’i’, (which puts the editor in
Insert Mode). Hitting the key, goes back to Normal Mode (in which you can enter commands). If you can
overcome this initial hurdle in using Vim, you may (one day) appreciate its qualities.
One important hint: If vim seems to have gone completely mad ... check that the caps lock key is not on!

Get me the hell out of herel!, (save and exit)

[esc] ZZ

[esc] :wq! [enter] “(if the previous didnt work!)
Enter some text

i “(and then start typing)
Undo the change which you just made (your gonna need this!).

[esc] u

‘u “(the same)

www.vim.org
http://en.wikibooks.org/wiki/Learning_the_vi_editor/
http://vim.runpaint.org/toc/
www.vim.org/tips/index.php
http://vim.wikia.com/wiki/Main_Page
http://rayninfo.co.uk/vimtips.html
http://www.eec.com/business/vi.html

Any command beginning with ;> must be terminated by pressing the key.
Repeat the thing you just did

Redo the change which you just undid

[esc]

:red [enter]

Stop inserting text

[esc]

Find the word ’big’ in the file

[esc]

View the helpful user guides to vim. These are more understandable

thelp

/big

user

View the help for the command “:w’ (the save file command)

thelp

W

Getting help for the Vim editor

thelp

thelp

The help obtained through typing ":help topic’ can be very cryptic for the same reason that unix man pages and

javadoc files are cryptic ... there are virtually no example commands. Look on the Internet for the countless

commandname

tutorials and cheat-sheets for vim.

2.1 Tips

Absolutely essential tips

* # gx g#
pA

Q:
matchit.vim
<C-N><C-P>
<C-X><C-L>
/<C-R><C-W>
/<C-R><C-A>
:set ignorecase
:set smartcase
:syntax on

:set syntax=perl

:h regexp<C-D>

Find word under cursor (<cword>) (forwards/backwards)

Match brackets {}[]()

Repeat last modification

Repeat last : command (then Q@)

% now matches tags <tr><td><script> <?php etc
Word completion in insert mode

Line complete SUPER USEFUL

Pull <cword> onto search/command line

Pull <CWORD> onto search/command line

You nearly always want this

Overrides ignorecase if uppercase used in search string
Colour syntax in Per, HTML,PHP etc

Force syntax (usually taken from file extension)

Type control-D and get a list all help topics containing

Than the reference manuals

Getting Help

Section 3 w

help for help (USE TAB)

:h quickref
:h tips
:h visual<C-D><tab>

:h ctrl<C-D>
:helpg uganda

:helpgrep edit.x*director

VIM Quick Reference Sheet (ultra)
Vim’s own Tips Help

Obtain list of all visual help topics

: Then use tab to step thru them

List help of all control keys

Grep HELP Files use :cn, :cp to find next
Grep help using regexp

:h :r Help for :ex command
:h CTRL-R Normal mode
:h /\r What’s \r in a regexp (matches a <CR>)

:h \\zs Double up backslash to find \zs in help 777
:h i CTRL-R Help for say <C-R> in insert mode
:h ¢ CTRL-R Help for say <C-R> in command mode
:h v_.CTRL-V Visual mode

:h tutor VIM Tutor

<C-[>, <C-T> Move back & Forth in HELP History
gvim -h VIM Command Line Help

:cabbrev h tab h

Open help in a tab

- Section 4
The Vim Annoyances w

In order to go into nmormal’ mode (where you can enter commands such as "D’ delete the rest of the line) you
have to press the [escape] key which is quite difficult to find without looking at the keyboard. But it may be
possible to assign another key(s) to perform this job

4.1 Traps

Vim traps
In regular expressions you must backslash + (match 1
In regular expressions you must backslas
In regular expressions you must backslash |
In regular expressions you must backslash -
/fred\+/ matches fred/freddy but
/\(fred\)\{2,3}/ note what you have

Section 5
Opening Files To Edit 1

Edit the text file ‘poem.txt’ in the current folder
vim poem.txt
Edit the file which was just mentioned on the command line

less "/docs/poem.txt

vim !$ “(this opens the file ’~/docs/poem.tzt’ for editing)
Choose a file from the current directory to edit
e . “(the dot IS mnecessary)
Choose a file to edit
' E “(no dot is mecessary)
Edit the file most recently edited in the current session
e #
Reload the current file which has been modified in another editor

tel

4

Edit a compressed file (.Z, .gz .bz2)

vim file “(same as editing a mnormal file, thanks to the ’gzip’ plugin)
Edit a script that’s somewhere in your path.

vim ‘which <scriptname>°

Its possible to edit the standard input stream (usually called ’stdin’) This might also be useful for search multiple
files.

Edit (a new file) containing lines which contain ‘tree’ from ‘doc.txt’

grep tree doc.txt | vim - “(Im not sure why you would want to do this)

exploring files to edit
‘e . File explorer
:Exp(lore) File explorer note capital Ex
:Sex(plore) File explorer in split window
:browse e Windows style browser
:1s List of buffers
:cd .. Move to parent directory
rargs List of files
rargs *.php Open list of files (you need this!)
:lcd %:p:h Change to directory of current file
rautocmd BufEnter * lcd %:p:h Change to directory of current file automatica lly (put in _vimrc)

Editing Multiple Files Section 6 }
Edit all filenames ending with ’.txt’ in the current folder

vim *.txt
Edit all files on the computer ending with ’tree’ in the filename

vim $(find / -name "xtree") “(’find ’ may take a while to finish)

vim ‘find / -name "*tree"‘ “(the same)
See all the files currently being edited
rargs
Open a new file and edit it
rarge file
Close a file 777
:bd
Edit lots of files which contain a certain string (including subfolders)
vim $(grep -ril text *)
Substitute yes with no, in all the files, confirming each substitution
rargdo %s/yes/no/gc | w “(the ’w’ saves each file)
Write all files in the argument list (all files being edited)
twa
Jump to the file (or url) under the cursor
gt
Open a new file (without closing the last) and edit it
arge newfile

Toggle between 2 buffers (files) which are open in vim
5

[CTRL] -
Sessions (Open a set of files)

“(this switches back and forth between 2 files)

gvim filel.c file2.c 1ib/lib.h 1ib/1ib2.h load files for "session'
:mksession “(Make a Session file (default Session.wvim))
Execute multiple commands on a group of files
vim -c¢ "argdo %s/ABC/DEF/ge | update" *.c
Remowe blocks of text from a series of files
vim -c "argdo /begin/+1,/end/-1g/"/d | update" *.c

Operate a command over multiple files

rargdo %s/foo/bar/e Operate on all files in :args ‘
:bufdo %s/foo/bar/e

:windo %s/foo/bar/e

rargdo exe ’Y!sort’|w!
:bufdo exe ‘‘normal @q’’
:silent bufdo !zip proj.zip %:p

Include an external command ‘
Perform a recording on open files ‘
Zip all current files ‘

| w

Multiple Files Management (Essential)

:bn Goto next buffer
:bp Goto previous buffer
:wn Save file and move to next (super)
:wp Save file and move to previous
:bd Remove file from buffer list (super)
:bun Buffer unload (remove window but not from list)
:badd file.c File from buffer list
:b3 Go to buffer 3
:b main Go to buffer with main in name eg main.c (ultra)
:sav php.html Save current file as php.html and “move” to php.html
:sav! Y<.bak Save Current file to alternative extension (old way)
:sav! Y:r.cfm Save Current file to alternative extension

:sav %:s/fred/joe/

:sav %:s/fred/joe/:r.bak2

2tmv % %:ir.bak
:help filename-modifiers

Do a substitute on file name

Do a substitute on file name & ext.

Rename current file (DOS use Rename or DEL)
Get help

re! Return to unmodified file
:w c:/aaa/l Save file elsewhere
:e # Edit alternative file (also cntrl-")
:rew Return to beginning of edited files list (:args)
:brew Buffer rewind
:sp fred.txt Open fred.txt into a split
:sball,:sb Split all buffers (super)
:scrollbind In each split window
:map <F5> :1s<CR>:e # Pressing F5 lists all buffer, just type number
:set hidden Allows to change buffer w/o saving current buffer

Vim Tabs

Section 7 w

Recent versions of vim can use tabs to edit multiple files. I had no idea about this. Tabs are similar to the tabs
used in modern web browsers, allowing you to have more that one file open and easily switch between the open
files.

View help for using tabs

help :tab

help tabpage “(better help)

Show all open tab files

:tabs

7.1 Opening Files In Tabs

Open 2 files in vim using tabs

vim -p fred.php joe.php

Vim 7 tabs
:tabe fred.php

:tab ball

7.2 Closing Tabs
Close the current tab

:tabc

:tabclose “(the same)

Close all tabs except the current one

:tabo

Ezxit all tabs and vim in one go
1qa

7.3 Switching Tabs

“(

“(tab

open

Switch to the next tab. Goes back to the first if on the last tab

:tabn
:tabnext

[control] [pagedown]
Switch to the previous tab
:tabp

:tablN “(the same)
Go to the last tab page

:tabl
Go to the first tab page

:tabr

:tabfir

Vim 7 forcing use of tabs from .vimrc

:nnoremap gf <C-W>gf
:cab e tabe

:tab sball ~“(retabd

“(the

“(the

files

same)

same again)

fred.php

open files

in a new

)

in buffer (repair))

tab)

7.4 Editing In Multiple Windows

Vim windows are not like 'desktop’ windows; they are panes into which the text editing area is split.
Open the file in a split window above the current file

:sp file “(the original file rTemains open)

:split file “(the same)
Close the current window

°q
Jump from one window to another

[control]l+w [control]+w

7.5 Transfering Text From One File To Another
Open both files in vim
vim fileA fileB

Use ’[control] ~ to switch between the 2 files
Delete a paragraph in one file and paste it in the second

dap (press [control]l ~) p
Copy a paragraph to the clipboard and paste it into the second
yap (press [control] ~) p

.-) Section 8
Editing Remote Files 1
Use the netrw plugin, but the version which comes with vim 7.0 for windows does not work well.

To access sourceforge from vim on MS Windows put in the vimre file
let g:netrw_cygwin = 0
let g:netrw_scp_cmd = "E:\\tools\\putty\\pscp.exe -pw some -batch

Edit a file on a sourceforge site with vim

e scp://user ,project@uweb.sourceforge.net/htdocs/file.txt

8.1 Editing A Wiki With Lynx And Vim
http://c2.com/cgi/wiki?UsingWikiWithLynx
instructions on how to use vim and lynx to edit a wiki.

Start lynx; press "o in the ”Editor“ field write ”usr/bin/vim” or the path to the “vim” executable (if you dont

know this, type “which vim” on the command line). At the bottom of the page activate the “accept changes”

link.
Go to a wiki-page in lynx and “click” on “edit”. Go to the edit field and type “control X v” or “control V v”.

After editing type “:wq” and then click on the save link
8.2 Editing With Encryption

The Vim encryption algorithm is stated to be weak. But it’ll keep the honest people out.
Start editing file.txt’ using encryption

vim -x file.txt “(a password prompt will appear)
Remove the password for a file (and file encryption)

set key=
Change or add a password for a file

: X “(an ’enter password ’ prompt will appear)

http://c2.com/cgi/wiki?UsingWikiWithLynx

Section 9 w

Saving Files

Get help for filename modifiers (for saving files with new names)
:help filename-modifiers
Set vim to automatically save files on exit or when switching buffers
:set autowriteall
Save a copy of the current file named ’copy.tat’
‘W copy.txt “(continue to edit the original file)
Save a file with a new name (“save as”) and edit the new file
:sav copy.txt
Save the current file changing the extension to bak
:w %h:r.bak
Save a file you edited in vim without the needed permissions

:w !sudo tee % “(the file must be reloaded)

:w !pfexec tee % “(another way, but requires ’pfexec’ to be installed)

9.1 Saving Chunks Of Files
Save highlighted text to a new file
[shift]+v , highlight text with j or k, then

:w newfile
Save the text between bookmarks ’a’ and ’b’ to newfile
’a,’b w newfile
Save the lines 200-300 to the end of textfile’ (append the text)
:200,300w >> textfile
Save the current paragraph to the end of ’textfile’
lap<backspace>w >> textfile “(<backspace > means press that key)
Write everything from the current line to the bookmark ‘x’ to ’file.tzt’

I’x<backspace>w file.txt “(the file is created)

I ’x<backspace>w! file.txt “(if the file ezists, it is owverwritten)

- - Section 10
Filename Modifiers w

manipulating file names
:h filename-modifiers Help
:w % Write to current file name
:w %:r.cfm Change file extention to .cfm
:lecho %:p Full path & file name
:lecho %:p:h Full path only
:lecho %:t Filename only
:reg % Display filename
<C-R>Y% Insert filename (insert mode)
"%p Insert filename (normal mode)
/<C-R>Y Search for file name in text

- Section 11
Vim Patterns w

Find '+3354.43" and replace at the end of a line
:hs/+\N(\NA\I\.\)*x$//gc “"(looks for a ’+° followed by digits or a ’.7)

Section 12
Ex Commands w

Ex commands are derived from an ancient text editor known as ’ed’ or ’ex’. These commands are usually written
after a ’:” colon. These commands are often overlooked when using 'vim’ but in some circumstances have a
zen-like power to achieve low-keystroke edits. These ex and ed commands are well explained in the classic unix
treatise "The Unix Programming Environment’ by Kernighan et al.

Show a help listing of all vim ex commands

help holy-grail

help ex-cmd-index
Show help about the ex 'p’ (print) command
thelp :p
Show every line in the file which begins with a hash '#’
:g/ " \sx#/p ~“(the lines are displayed one screen at a time)
View the whole file with unprintable characters made visible
Al “(good for seeing pesky tab characters)
View all blank lines with the invisible characters visible

:g/ " \s*$/1

simple ex commands
Move text
Delete text
Shift one shiftwidth to the right
Shift text one shift-width to the left
co Copy text
Print (the file is unchanged)
Print text with invisible characters made visible
Append text
Insert text

NV as

o o

12.1 Imserting Text With Ex
Insert the word ’tree’ after the next line starting with a '#’

:/" *x#/a<cr>tree<cr>.<cr> “(but doesnt work as a command)

12.2 Moving Text With Ex

Move the current line to line 100 (inserting not overwriting)

:m100

Mowve the current line to the bottom of the file
:m$
:.m$ “(the same)

Mowe the line number 315 to the top of the file
:315m0

Movwe lines 316 to 330 inclusive to line 10
10

:316,330m10 “(this inserts the lines at line 10, not overwrites)

Mowve all lines which begin with ‘doc’ to the bottom of the file
:g/ " \s*xdoc/m$

Mowe the next line which starts with a '#’ to the end of the file
:/ " \s*#/m$

12.3 Deleting With Ex

Delete all lines which start with °#’° (which are script comments)
tg/ " \sx*x#/d

Delete all empty lines from a file with vim
:g!/\s/d

Delete all lines from the current line to the end of the file
i, 8d

Delete the next 10 lines after the current line

:.,+10d

12.4 Copying With Ex
Copy and insert the current line 4 lines below the current line

:co+3

:.co+3 “(the same)
Copy all lines from the current to the next blank line to line 10
:.,/ " \s*x$/col0 “(the copied lines are inserted, not

Copy all lines from the current to the end of the file into the clipboard

1, 8y

'.,$y “(the same)

'.,$ya “(the same)

:.,$yank “(the same again)
Paste the contents of the clipboard after line 100

:100pu

Insert the contents of the clipboard after every line which starts with *
:g/ " \s*x*/pu

12.5 Reformatting Lines With Ex

On all lines beginning with >>" join the next line to it
1g/ " \s*x>>/]

Shift one ‘shiftwidth’ to the right all lines not starting with a '#’
tg !/ \s*x#/>

11

overwritten)

examples of ex line addresses and ranges
123 Line number 123
/doc The next line containing the pattern 'doc’
The current line
?pat Previous with pat
$ The last line of the file
.=10 Ten lines before the current line
+ The line after the current line
123,234 From line 123 to line 234
, the line before the current line
’x Marked with x
+n N forward
>?> Previous context

% All lines in the file

Mowve all comments the top of the file in vim

tg: " \s*#.*%:m0
:g/k\s*#.*/mo “(the same)

:g/*[:space:]*#.*/mo “(also the same)

12.6 The Ex Global Command
Chain an external command
:.g/"/ exe ".l!sed ’s/N/X/’" | s/1/Q/
Combining g// with normal mode commands
:g/|/norm 2f|r* “(replace 2nd | with a star)
Send output of previous global command to a new window
:nmap <F3> —:redir @a<CR>:g//<CR>:redir END<CR>:new<CR>:put! a<CR><CR>
Global combined with substitute (power editing)

:’a,’bg/fred/s/joe/susan/gic : can use memory to extend matching
:/fred/,/joe/s/fred/joe/gic : non-line based (ultra)

:/biz/,/any/g/article/s/wheel/bucket/gic: non-line based
Find fred before beginning search for joe
:/fred/;/joe/-2,/sid/+3s/sally/alley/gIC
Create a new file for each line of file eq 1.txt,2.txt,3,tat etc
:g/"/exe ".w ".line(".") .".txt"

Save results to a register/paste buffer

cg/fred/y A : append all lines fred to register a
cg/fred/y A | :let @x*=Qa : put into paste buffer
:let @a=’’|g/Barratt/y A |:let @*=Qa

Filter lines to a file (file must already exist)
:’a,’bg/ " Error/ . w >> errors.txt
Duplicate every line in a file wrap a print ” around each duplicate
:g/./yank|putl|-1s/’/"/gls/.*/Print &’/
Replace string with contents of a file, -d deletes the “n{,%rk”

:g/ "MARK$/r tmp.txt | -d
Display prettily

:g/<pattern>/z#.5 display with context

:g/<pattern>/z#.5|echo "

display beautifully
Perform a substitute on every other line

:g/"/ if line(’.?)%2ls/"/zz /
Match all lines containing “somestr” between markers a € b Copy after line containing “otherstr”
:’a,’bg/somestr/co/otherstr/ co(py) or mo(ve)
As above but also do a substitution

:’a,’bg/strl/s/strl1/&&&/|mo/str2/

:hnorm jdd delete every other 1line

Incrementing numbers (type <c-a> as 5 characters)

:.,$g/°"\d/exe "norm! \<c-a>": increment numbers

:’a,’bg/\d\+/norm!

~A

increment numbers

global command display

:g/gladiolli/#
:g/fred.*joe.*dick/
:g/$<fred$ >/

Display with line numbers (YOU WANT THIS!)
Display all lines fred,joe & dick
Display all lines fred but not freddy

:g/"\s*$/d Delete all blank lines
:g!/~dd/d Delete lines not containing string
:v/"dd/d Delete lines not containing string

:g/joe/,/fred/d
:g/fred/,/joe/j

Not line based (very powerfull)
Join Lines between ’fred’ and ’joe’

e /.-10,.d Delete string & 10 previous lines
:g/{/ ,/}/- s/\n\+/\r/g Delete empty lines but only between {...}
:v/\S/d Delete empty lines (and blank lines ie whitespace)
:v/./,/./-j Compress empty lines
:g/~$/,/./-j Compress empty lines
:g/<input\|<form/p ORing
:g/~/put_ Double space file (pu = put)
:g/"/m0 Reverse file (m = move)
:g/"/m$ No effect!
:’a,’bg/"/m’b Reverse a section a to b
g/ /t. Duplicate every line
:g/fred/t$ Copy(transfer) lines matching fred to EOF

:g/stage/t’a
:g/"Chapter/t.|s/./-/g
:g/\C"I[~"1]%\)\{80}/d

Copy (transfer) lines matching stage to marker a (cannot use .)
Automatically underline selecting headings
Delete all lines containing at least 80 tabs

12.7 The Command History

some command history commands

:ju(mps) List of your movements
‘help jump-motions :history List of all your commands
:his ¢ Commandline history
:his s Search history
q/ Search history Window (puts you in full edit mode) (exit CTRL-C)
q: Commandline history Window (to full edit mode) (exit CTRL-C)
:<C-F> History Window (exit CTRL-C)

13

Searching For Text

Section 13 w

Search for the word ’big’
/big
Repeat the last search

n

Repeat the last search in the opposite direction

N

searching and moving

/" joe.

/.

/joe/e
/joe/e+1
/joe/s=2

/joe/+3
xfred.*bill/
/" [A-J1/

/begin_.*end
/fred_s*joe/

/fred\ | joe
*xfred\&.*joe
/$<fred$ >/

/$<ndndndnd$ >
/\D\d\d\d\d\D

/$<ndn{4}$ >

/\CL70-91\ 1" \)%. *%

Cursor set to End of match

Cursor set to End of match plus 1

Cursor set to Start of match minus 2

Find joe move cursor 3 lines down

Find joe AND fred AND Bill (Joe at start of line)
Search for lines beginning with one or more A-J
Search over possible multiple lines

Any whitespace including newline

Search for FRED OR JOE

Search for FRED AND JOE in any ORDER!
Search for fred but not alfred or frederick
Search for exactly 4 digit numbers

Search for exactly 4 digit numbers

Same thing

Search for absence of a digit or beginning of line

Match word boundaries

/\<all\>/

Summary of repeated searches

; F,t, ForT

F, t, F or T in opposite direction

n Last / or 7 search

N Last / or 7 search in opposite direction

“(matches

’all ’ but not ’balls ’)

Find the next, previous word under the cursor

gx g#

Make all searches case insensitive

:set ignorecase

:set ic

“(the same)

(this affects substitutions with s/// as well as searches)
Make all searches case sensitive (the default)

:set noignorecase

VIM has an its own ‘grep’ command (different from the bash one)

:grep some_keyword *.c

:cn

Multiple file search

:bufdo /searchstr/

Multiple file search better but cheating

“(get list of all c-files contatning keyword)

“(go to mexzt occurrence)

“(use :rewind to rTecommence search)

14

:bufdo %s/searchstr/&/gic ~“(say n and then a to stop)

finding empty lines

/"\n\{3} Find 3 empty lines
/"str.*\nstr Find 2 successive lines starting with str
/\Cstr.x\n\)\{2} Find 2 successive lines starting with str

Using reqular expression memory (back references) in a search
/\(fred\) .*\(joe\) .*x\2.%\1
Repeating the Regexp (rather than what the Regexrp finds)
/NCET L T+, \) \{8}
How to search for a URL without backslashing
?http://www.vim.org/ ~((first) search BACKWARDS!!! clever huh!)
Specify what you are NOT searching for (vowels)

/\c\v(["aeioul&\a) {4} “(search for 4 comnsecutive consonants)
/\%>201\%<301goat “(Search for goat between lines 20 and 30)

/" .\{-}home .\{-}\zshome/e ~“(match only the 2nd occurence in a line of
= "home" %)

:%hs/home .\{-}\zshome/alone ~“(Substitute only the occurrence of home in
= any line)

Find str but not on lines containing tongue

“\(.*xtongue.*\)\@!.*nose.*$
\v~((tongue)@!.)*nose ((tongue)@!.)*$
.xnose . *\& " \%(\% (tonguel\)\Q!.\)*$

:v/tongue/s/nose/&/gic

Section 14
Search And Replace w

These these character classes dont work within [...] character classes.

Using a character class such as "\a’ for an alphabetc character may be better than using the character class
'[A-Za-z] because the \w class may also handle international word characters, such as n tilde (the spanish enye)
for example.

substitution
:hs/fred/joe/igc General substitute command
:%hs//joe/igc Substitute what you last searched for
:hs/~/sue/igc Substitute your last replacement string
:%s/\r//g Delete DOS returns "M

deleting empty lines
:%s/"\n\{3}// Delete blocks of 3 empty lines
:%s/"\n\+/\r/ Compressing empty lines
:hs#<[">]\+>##g Delete html tags, leave text (non-greedy)
:%s#<_.\{-1,}>##g Delete html tags possibly multi-line (non-greedy)
:%s#.x\ (\d\+hours\) .*#\1# Delete all but memorised string (\1)

VIM Power Substitute
:’a,’bg/fred/s/dick/joe/ ~(VERYlgSEFUL)

See a long descrition of patterns usable with s///
:help pattern

Before doing a search and replace on an important file it is a good idea to use the '¢’ modifier to the ’s’ command,
to check what changes will be made

:%S/\S\+$//gc “(remove trailing spaces, with confirmation each time)

:%S/\S\+$//g “(remove trailing whitespace, mno confirmation)
Replace the word tall with small in the file, asking for confirmation

:hs/\<tall\>/small/gc ~“(this will replace ’big’ but not ’stall ’ etc)

:%hs/\<tall\>/small/g ~“(the same but with no confirmation prompt)

Multiple commands on one line

2hs/\NEN+\.gif\>/\r&\r/g | v/\.gif$/d | %s/gif/jpg/

:%hs/a/but/giel :update|:next : then use @: to repeat

Remowve trailing whitespace on every line

:hs/\s\+x$//g
:1,8s/\s\+*x8$//g “(the same)
:1,8s/[[:space:11\+x$//g “(the same again)
:1,8s/[[:blank:]11\+*x$//g “(almost the same again)
Turn DOS "M line breaks into real line breaks
ths/\r/\r/g
Replace all colon ’:’ characters with semicolons ’;’
:%S,:,;,g “(this shows that any char can be used as the delimiter)
:%S/:/;/g “(the same)

Delete all empty lines from a file with vim
:g!/\s/d

Make multiple consecutive blank lines into only one
:g/ " \s*x$/,/\S/-jls/.x//

Insert the line number at the beginning of each line
:hs/~/\=line(’.7) .’

Move all comments the top of the file in vim

1g: "\ s*#.%x:m0

cg/ " \s*x#.%x/m0 “(the same)

Get rid of tab characters in the whole file
:%! expand

Replace all slash ’/’ characters with bar "—’ characters
:%hs@/Q|eg

Delete all lines which contain the text 'big’

g/big/d

:g/RE/cmd “(the general form of the command)

Memory

St kN (tbl_\w\+\) . *#\1# ~(produce a list of all strings tbl_ *)
:s/\NC.x\) :\NC.*x\)/\2 : \1/ ~(reverse fields separated by :)

:%s/ " \NC.x\)\n\1$/\1/ ~(delete duplicate lines)
Non-greedy matching \{-}

:hs/” \{-}pdf/new.pdf/ ~(delete to 1st pdf only)
Use of optional atom \ ?

chs#\<[zyl\7tbl_[a-z_]\+\>#\L&#gc ~(lowercase with optional leading

= characters)
Qver possibly many lines

:hs/<V==-_.\{-}-->// ~(delete possibly multi -line comments)

thelp /\{-} ~(help non-greedy)
Substitute using a register

:s/fred/<c-r>a/g ~(sub "fred" with contents of register "a')
:s/fred/<c-r>asome_text<c-r>s/g

:s/fred/\=0Qa/g ~(better alternative as register not displayed)
Search for alternate patterns ’goat’ or ‘cow’ and replace with ’sheep’
:hs/goat\|cow/sheep/gc
Insert a blank line every 5 lines
:hs/\v (. *\n){5}/&\r/ “(7??)
Using a vim function within a substitution

:s/<today>/\=strftime ("%c")/ “(insert a date instead of <today >)

17

special character classes for vim patterns
\s Whitespace character: <Space> and <Tab>
\S Non-whitespace character; opposite of \s
\d Digit: eg [0-9]
\D Non-digit: eg ["0-9]
\x Hex digit: eg [0-9A-Fa-f]
\X Non-hex digit: eg ["0-9A-Fa-f]
\o Octal digit: eg
\0 Non-octal digit: eg ["0-7]
\w Word character: eg [0-9A-Za-z_]
\W Non-word character: eg ["0-9A-Za-z_]
\h Head of word character: eg [A-Za-z_]
\H Non-head of word character: eg ["A-Za-z_]
\a Alphabetic character: eg [A-Za-7]
\A Non-alphabetic character: eg [*A-Za-7]
\1 Lowercase character: eg [a-Z]
\L Non-lowercase character: eg [a-z]
\u Uppercase character: eg [A-Z]
\U Non-uppercase character: eg [*A-Z]
\i Identifier character (see ’isident’ option)
\I Like “\i”, but excluding digits
\k Keyword character (see 'iskeyword’ option)
\K Like “\k”, but excluding digits
\f File name character (see ’isfname’ option)
\F Like “\f”, but excluding digits
\p Printable character (see ’isprint’ option)
\P Like “\p”, but excluding digits
\-x Where x is any of the above character classes with end-of-line included

14.1 Uppercase And Lowercase

Warning: :s///... etc is affected by the setting of 'ignorecase’ in the vim settings. Type :set and if ’ignorecase’
appears the all searches and replaces are going to be case insensitive.
Turn off and on case insensitivity in searches with :s///

:set ic
:set ignorecase ~“(the same)

:set noic

Show lines which contain only uppercase letters or spaces
g/ "\N(\u\l \)\+$/p

Make all text in a file lowercase

:hs/[A-Z]1/\L&/g “(only works for ’ascii ’ texzt)

:hs/\a/\L&/g “(the same, but should work for international text)
Make all words ’capital case’, that is with the first letter in uppercase

ths/\<\a\+/\u&/gc “(this turns ’hello you’ 4nto ’Hello You’)
Note that \u \U \l \L have different meanings depending on context. In the right hand side of a s/// expression

they mean ...

escape codes
\1 Turn only the next character in the match to lower case |
\L Turn all the characters in the match to lower case ‘

\u Convert only the first character in the match to upper case

\u Convert all the characters in the match to upper case
18

Changing Case
guu Lowercase line
gUU Uppercase line
Vu Lowercase line
VU Uppercase line
g~~ Flip case line
vEU Upper Case Word
vE~ Flip Case Word
ggguG Lowercase entire file

Title-ise Visually Selected Text (map for .vimre)

vmap ,c :s/\<\(C.\)\N(\k*x\)\>/\u\1\L\2/g<CR>
Title-ise a line

nmap ,t :s/.*/\L&/<bar>:s/\<./\u&/g<cr>
Uppercase first letter of sentences

:hs/ L. 1?1\ _s\+\a/\U&\E/g

. Section 15
Text Indentation 1

Vim has various options and commands for automatically indenting (that is adding spaces or tabs at the beginning
of a line) as you type or for using with commands like 'gqap’ (reformat a paragraph). In fact, there are so many
indentation options, that one can sometimes become frustated when vim constantly indents lines in an unexpected
way.

See the value of the current shift-width (used to in/decrease indentation)

:set sw

:set shiftwidth “(the same)
View help for the ’shiftwidth’ configuration option
thelp ’sw’
Convert all tabs in a document to an equivalent number of spaces

:retab “(this may change indentation)

15.1 Automatic Indentation
View help for the ’autoindent’ configuration option
thelp ’ai’
Make the next line after the current line have the same indentation

:set ai “(when you are typing, the mnext tndent is ’aligned ’)

:set autoindent “(the same)
Make sure that vim uses spaces and not annoying tabs for indentations

:set expandtab

:set et “(the same)
Reformat a paragraph while preserving the current indentation of the text
:set ai [esc] gqap :set noai “(or just leave ’autoindent ’ set to on)

(reformatting means making each line of a similar length)
Turn off automatic indentation of the next line when typing

:set noai

19

15.2 Manual Indentation
Increase the indentation for the current paragraph by one shift-width
>ap ~“(you can repeat this operation by just typing .)
Decrease the indentation for this paragraph and the next 3 paragraphs as well
<4ap “(the indent <s decreased by a ’shiftwidth ’)
Decease the indentation by 1 shiftwidth for all lines above the current
<gg
Increase the shift-width of the current line by one ’shiftwidth’

>>

some indentation options
shiftwidth (sw) the number of tabs or spaces for an increase or decrease
cindent Automatically indent ¢ code files
smartindent Automatically indent other types of files
autoindent Align the indent of the next line to the current
expandtab Use spaces not tabs for indentations

indentation commands
retab Replace all tabs in the file with an equivalent number of spaces
>> Shift the current line
> Shift a range of lines

15.3 My Favourite Settings
Set the shiftwidth to 1, using spaces not tabs, automatically align next line

:set shiftwidth=1 expandtab autoindent

:set sw=1 et ai “(the same, but terse)

Section 16
Working With Text Data 1

Duplicating the columns (fields) of a space delimited file
ths= [T 1\+$=&&= - duplicate end column

:%hs= \f\+$=&&= - same thing

:%hs= \S\+$=&& - usually the same
Working with Columns sub any strl in col3

ths tNOVANwA+\s\+\) \{2}\) str1:\1str2:
Swapping first & last column (4 columns)

%8s N ANWNHN) N CoxNs\+\) N (\w\+\) $:\3\2\1:
Format a mysql query

:hs#\<from\>\|[\<where\>\|\<left join\>\|\<\inner join\>#\ré&#g
Substitute string in column 30

:hs/ N CAN{30\}\) xx/\1yy/
Decrement numbers by 3

:%s/\d\+/\=(submatch (0) -3)/
Increment numbers by 6 on certain lines only

:g/loc\lfunction/s/\d/\=submatché&)+6/

Better
chs#txtdev\zs\d#\=submatch (0) +1#g

:h /\zs
Increment only numbers gg\d\d by 6 (another way)
:%s/\(gg\)\@<=\d\+/\=submatch (0) +6/

:h zero-width
Rename a string with an incrementing number

:let i=10 | ’a,’bg/Abc/s/yy/\=1i/ |let i=i+1 # convert yy to 10,11,12
= etc

As above but more precise

:let i=10 | ’a,’bg/Abc/s/xx\zsyy\ze/\=1i/ |let i=i+1 # convert xxyy to
= xx11,xx12,

xx13
16.1 Sorting Text

Sorting with external sort
:%!sort —u Sort the whole file using external sort
:’a,’blsort —u Sort all text between bookmarks ’a’ and 'b’
'} sort -u Sorts paragraph (note normal mode!!)
12} sort -u Sort 2 paragraphs
:g/"$/;,/"$/-11sort Sort each block (note the crucial ;)

Sorting with internal sort

:sort /.x\%2v/ : sort all lines on second column

16.2 Csv Data Files
Highlight a particular csv column (put in .vimrc)

function! CSVH(x)

execute ’match Keyword /~\([~,I1*,\)\{’.a:x.’F\zs[",]I*/"’
execute ’normal ~“’.a:x.’f,’

endfunction

command! -nargs=1 Csv :call CSVH(<args>)

Columnise a csv file for display only as may crop wide columns

:let width = 20

:let fill=’> ’ | while strlen(fill) < width | let fill=fill.fill |
= endwhile

:%hs/\N(CL7;1%\) ;\=/\=strpart (submatch (1) .fill, O, width)/ge
:%hs/\s\+$//ge

Call with

:Csv 5 ~(highlight fifth column)

- : Section 17
Filtering Text w

Remowe all consecutive blank lines in the current file

:%lcat -s “(type ’u’ wundo to see how many lines would be deleted)
:1,$!'cat -s “(the same)
gg!G cat -s “(the same, using motions instead of ranges)

21

Remowve all extra spaces (consecutive spaces) in the current file

:h! tr -s
Reformat all lines after the current one, wrapping lines

:.,$!par “(par knows how to reformat ’bash comments ’ for exzample)
Insert the result of the ’ls’ bash command at the cursor position

:r !ls | tr ’\n’

Reformatting Text

Section 18 w

In this context 'formatting’ refers to the length of each text line and the amount of indentation of each line. The
vim ’gq’ command takes into account the current screen size and font size when wrapping the lines.

For reformatting source code see: “working with source code”

Remove extra spaces between words in the current paragraph

lap tr -s 7 °’
lap tr -s ’[:blank:]’ “(the same but handles tabs)
tap s/[I\+/[1/g “(the same but harder to type)

Format the next paragraph of text (fill and break lines)

'} fmt “"(uses exzternal program ’fmt ’)

'} par “(the same, but ’par’ can do more than format)
Turn on autoindenting

:set ai “(useful with ’gq’, since it preserves the current indent)
Format the until the end of the paragraph with the vim formatter

gqlt “(formats only after the cursor)
Format the current paragraph with the vim formatter

gqap “(this also formats before the cursor)
Format the text until the bookmark ‘a’

gq’a
Format the entire file

gggqG
Centre align the whole file with a width of 40

:hcenter 40
:hleft 40 “(left alignment)

:hright 40
Center the current line

. Cce

Is your Text File jumbled onto one line? use following
:%s/\r/\r/g Turn DOS returns "M into real returns
:%hs= *$== Delete end of line blanks
:%s= \+$== Same thing
:%s#\s*¥\r\?$## Clean both trailing spaces AND DOS returns
:%s#\s¥\rx$## Same thing

22

Mowving Around

Section 19 w

This section is about various movement commands available in Vim. Movement commands can follow other

command (such as deleting, or copying) to provide a range for that command

the basic movement
j One line down
k One line up
h One character left
1 Once character right

Go to the beginning of the file
g8
Go to the end of the file
G
Go to line 33
33G
Jump to the last modification line
Jump back to where you just were (before jumping)
7 “(i1 find this wvery handy)
Cycle through recent modifications, forwards and backwards
g; &
Set a bookmark named ’a’ at the current position
ma “(or mb, mc, etc)
Jump to the position indicated by the bookmark a
’a
Go to the end of the paragraph
}
Go to the next instance of the character g’ on the line
fg
Repeat this operation
Go BACK to the next instance of the character g’ on the line
Fg
Move to the matching parenthesis {,[,(
b
Scroll scroll the current line to the top of the window
zt
Jump to the next instance of the word under the cursor
*
Return to last edit position (You want this!)
autocmd BufReadPost *

\ lf line("’\"") > O && line(u)\nn) <= line("$")

\ exe "normal! g‘\"" |
\ endif

23

Refering To Chunks Of Text

Section 20 w

Chunks of text can be referred to by line numbers, motion commands, or "text objects’.

Delete lines 4 to 9
:4,9d

Delete until the next word ’stop’ (not including the word)

d/stop

20.1 Text Objects

Text objects are very useful because they allow you to refer to a chunk of text without knowing the line numbers,
or having to position the cursor at the start of the chunk.

Get help about the available text objects’
:help text-objects

Delete the current paragraph (before and after the cursor)

dap “(’ap’ refers

to a paragraph)

Change the current sentence (before and after the cursor)

cas

Change the current sentence and the next one

2cas
Change the current single quotes quotation

ci’ “(leaves the

ca’ “(deletes the

quotation marks)

quotation marks)

available textobjects

a" or a’
i" or i’

aw A word

aW A long word (including punctuation)
iW A long word without white space

as A sentence

ap A sentence

ip A sentence, without the blank lines
a> A angle braket block

A brace block

A brace block

a] A square bracket block

a) A bracket block

i) A bracket block not including the brackets
A quotation (one line only)

A quotation not including the quotes

text objects

:h text-objects
daW

di< yi< ci<
da< ya< ca<
dat dit

diB daB

das

Get help

Delete contiguous non whitespace
Delete/Yank/Change HTML tag contents
Delete/Yank/Change whole HTML tag
Delete HTML tag pair

Empty a function {}

Delete a sentence

http://vim.wikia.com/wiki/Indent_text_object

How to define a new text object

24

http://vim.wikia.com/wiki/Indent_text_object

Section 21 w

Inserting

Insert the current date in a new line

:r ldate
:.r l!date “(the same)
:read !date “(the same)

Insert the current date in at the end of the document
:$r !date

Insert the current date after the next blank line

:/” *x$/r ldate “(doesnt work with tab characters)
:/"\s*x$/r !date “(handles any kind of whitespace)
:/"[:space:]*x$/r !date “(the same)
:/"[[:space:]]1*x$/r !date “(the same, again)

Insert todays date after every blank line in the file
:g/"\s*x/r !date “(this seems a bit slow)

Insert all the text files in the current directory

r *.txt “(but why would you do this?!)

cat *.txt >> big.txt “(similar but not the same, from bash)
Insert a file listing of the current folder at the top of the file

:1r !'1s

The following doesnt work because vim is running as a different user
:r 'history

Insert after the cursor, lines 200-300 of the file ‘tree.txt’
:r !sed -n 200,300p tree.txt

Insert an attachment within an email message in vim

:r luuencode binfile binfile

Section 22 w

Inserting From The Web

Insert the contents of a webpage as plain text at the end of the file
:$r !lynx -dump http://rayninfo.co.uk/vimtips.html

22.1 Inserting A File Into Itself

Double the current file (append itself to the end of itself)
:$r lcat %

Insert all comment lines in the file after the cursor

:r lgrep ’° x#’ Y

:r l!cat % | grep 7 *#’ “(the same)

In the command above, lines beginning with the '#’ comment character are copied in the same order to the
current cursor position. Exactly why you would want to do this remain unclear but I thought that it was
interesting.

25

22.2 Random Text
Make a command 'Rand’ which inserts some random words in the document

:com! -nargs=1 Rand r !shuf -n <args> /usr/share/dict/words | tr ’\n’ ’
=)

This command can be executed with 'Rand 200" which inserts 200 random words for the dictionary file into the
current file after the cursor.

; Section 23
Deleting 1

Delete the current paragraph (deletes before and after the cursor)
dap “(’ap’ refers to a paragraph)
Delete the paragraph after the cursor
d}
Delete the current line and the next line
d
Delete the current line and the line above it
dk
Delete the rest of the line after the cursor
D
Delete several lines, using visual mode
[shift]+v, move down (j) or up (k) to select text, press d
Delete up to the line number 234
d234G
Delete from current line until the bookmark ‘¢’

d’c

— Section 24
Editing w

Change the rest of the line after the cursor
C
Shift the next paragraph right
>} “(change the shift width with :set sw=4)
Lower case a line
guu
Upper case a line
gUu
Make the current paragraph uppercase
gUap
Make the next word uppercase

gUw

26

24.1 Repeating Edits

Summary of editing repeats
. Last edit (magic dot)
:& Last substitute
:%& Last substitute every line
:%h&gic Last substitute every line confirm
g’h Normal mode repeat last substitute
g& Last substitute on all lines
@@ Last recording
Q: Last command-mode command
1 Last :! command
:~ Last substitute
:help repeating

24.2 The Edit Changes List

managing changes
). Jump to last modification line (SUPER)
‘. Jump to exact spot in last modification line
g; Cycle thru recent changes (oldest first)
g, Reverse direction
:changes
:h changelist Help for above
<C-0> Retrace your movements in file (starting from most recent)
<C-I> Retrace your movements in file (reverse direction)

Section 25
Cut Copy And Paste w

In vim, copying text to the clipboard is known as “yanking”. This text can then be pasted into the text with
the ”p” command.
Copy the current line to the clipboard.

yy

""yy “(the same, but wunnecessary)

Paste text into the file after the current position

%

""p “(the same, naming ezplicitly the default register "")
Paste text into the file before the current position

p
Paste text after current position and adjust the indent

Ip
Copy to the clipboard all text until the next occurrence of “stop”

y/StOp “"(the word "stop" 4is mnot tncluded in the copied texzt)

Copy all text of the current line until the next ”:” character

yf:

; Section 26
Registers 1

Registers are buffers or ’clipboards’ which can hold text or commands. A register can be pasted or executed.

Registers have one letter names from a to z. A macro can be recorded and and stored in a register with 'q’;

Display contents of all registers
‘reg

27

:di “(the

same ?272)

Display contents of register b

:reg b

Copy the current line into register 'd’

n dyy

Delete the current line and store in register d and the default reg.

"cdd

Store text that is to be changed or deleted in register a

"act<

“(change

untel

the ’<’ character)

Change the word under the cursor and store a copy of the old one in reg b

"bcaw
=)

“(a

copy of the

old word s also stored i1n the

Strip leading >>" from a line, copy it into a register and execute it

s/ 1%>>// |

normal u"ayy@a

(useful for executing shell commands in the document which have some prefix)
Copy (yank) from the cursor to the second instance of ~ on the line

y2f°’

“(the

text s

copted in the default register "")

Copy all text on the line up to the next quote * and put it in register 'k’

n kyf)

List your Registers

:reg Display contents of all registers
:reg a Display content of register a
:reg 12a Display content of registers 1,2 & a
““6p Retrieve 5th "ring”
"1p.... Retrieve numeric registers one by one
:let @y=’yy@"’ Pre-loading registers (put in .vimrc)
qqq Empty register "q”
gaq Empty register "a”
:reg .-/%:*" The seven special registers
:reg 0 What you last yanked, not affected by a delete
".dd Delete to blackhole register ”_ | don’t affect any register
manipulating registers
:let @a=0@_ Clear register a
:let @a="" Clear register a
:let @a=@" Save unnamed register
:let @x=0a Copy register a to paste buffer
:let ©@%=Q: Copy last command to paste buffer
:let @x=@/ Copy last search to paste buffer
:let @*=@), Copy current filename to paste buffer

26.1 Appending Text To The Registers

Append the current line to the register ‘a’

" Ayy

Delete the current line and append it to the register 'z’

"Xdd

Change the word under the cursor and append it to the register 'q’

"Qcaw

28

default register

26.2 Pasting Registers

Paste the contents of the register 'k’ into the document after the cursor

n kp
:put k “(the same)
:pu k “(the same)

Paste the current line into the default register and execute it

yy@" “(watch out this could have very strange results - user ’u’ to
= wundo)

Paste the contents of register °b’ into the document after the cursor
n 'bp

Paste the contents of register ’j” into the document before the cursor
n j P

26.3 The Numeric Registers

The numeric registers (“0 "1 72 etc) hold the text which was previously in the default register (””) before being
replaced with a new yank into the default register.
Paste what was formerly in the default register into the document

llop

26.4 Executing Registers

The registers may also be executed, if they contain a series of valid vim or shell commands. One can record a
macro into a register and then execute it.
Record a macro to be stored in the register 'y’

qy “(type ’q’ to stop recording the macro)
Ezecute the contents of the register 'y’

Qy
Copy the current line into a register and execute it

"ayyQa

; Section 27
Text Information 1

Show information for the character under the cursor
ga
Count words in a text file

g<C-G>

Section 28
Spell Checking }

Get help on spell checking
:help spell

Turn on spell checking with the default language
:set spell

Turn on spell checking, with US english

:setlocal spell spelllang=en_us

:setlocal spell spelllang=en_gb “(United Kingdom spelling)
29

Find out what language is currently being spell checked
:set spelllang
Turn off spell checking

:set nospell

:setlocal nospell “(not really sure what the diff <s)
Mowe to the next badly spelled word

1s
Add the current word to personal dictionary as good

zg
Suggest alternatives to a badly spelled word

z=

- : Section 29
Configuring Vim w

Configurations made with :set ... only apply for the current vim editing session. To make them permanent these
set’s need to be placed one of the vim configuration files (either for the current user or for all users).
View help on setting

:help options
See a brief description of all vim configuration options

:help option-list “(this also show the long and short mname of an
= option)

See a very detailed description of every single configuration option
thelp option-summary

See detailed help for the “autoindent’ configuration option

thelp ’autoindent’ “(note the quote characters. they are often needed
=)

thelp ’ai’ “(the same)

:help ’noai’ “(the same again)

thelp ai “(also works , but sometimes doesnt)

See detailed help for the ’cindent’ configuration option

:help ’cindent’

:help ’cin’ “(the same)

:help ’nocin’ “(the same)

:help nocin “(also works)

:help cindent “(No!!: shows documentation for the ’cindent ’ function)

See what settings for configuration options are currently in force

:set “"(only shows the modified settings)

:set all “(show all settings, modified and wunmodified)
See what the current value of the ’shiftwidth’ option is

:set sw

30

See what the value for the autoindent option value is

:set ai? “(note: ’:set ai’ doesnt work, because it

= autoindent)

:set autoindent? “(the same)
Dont insert any tabs

:set expandtab

set expandtab [in the ’vimrc’ file] ~(note there is no

Set more than one option at a time

:set expandtab autoindent “(turns tabs into spaces, and

= texzt)
Put commands and configurations in the file, or somewhere else
~/.vimrc “(this only affects ome user, not ewerybody)
Edit the global vim configuration file with the needed permissions
'sudo vim /etc/vim/vimrc

Make a command to edit the global vim configuration file (but not reload it)

com! Vimrc !sudo vim /etc/vim/vimrc “(ezecuted with

command! Vimrc !sudo vim /etc/vim/vimrc ~“(the same)
A command ’So’ to reload the vimre file easily

command! So so /etc/vim/vimrc “(ezecute with ’:S07)
Reload the vim configuration file

:so $MYVIMRC

:source $MYVIMRC ~(the same)

turns on

colomn ’:7)

auto —indents

>:Vimre)

:source ~/.vimrc “(reload the wusers persomnal config file)

Find the location of the start up configuration files
:version
Change the number of spaces for a shift to 4 (with ">>" for example)

:set sw=4

:set shiftwidth=4 “(the same)
Show line numbers for the whole file

:set number

:set nu “(the same)
Show tabs and ends of lines
:set list “(’:set molist’ to turn 4t off)
Show partial commands in the status bar
:set showcmd
Dont show the matching parenthesis when moving around the file
:NoMatchParen

(for some reason, this is not working in my “vimre” file)
DO show the matching parenthesis when moving around the file

:DoMatchP
oMatchParen 31

see also :set showmatch
Some mappings to make editing the .vimrc file easier

:nmap ,s :source $MYVIMRC
:nmap ,v :arge $MYVIMRC

:command Vimrc arge $MYVIMRC
Save your sessions in vim to resume later

:mksession! <filename>

29.1 The Configuration File

In vim, the configuration file (or files) is called 'vimrc’. There maybe several configuration files, one for the
current user, and one global file for all users.

_vimrc configuration file essentials
:set incsearch Jumps to search word as you type (annoying but excellent)
:set wildignore=*.o,*.0bj,*.bak,*.exe Tab complete now ignores these
:set shiftwidth=3 For shift/tabbing
:set vb t_vb=". Set silent (no beep)
:set browsedir=buffer Maki GUI File Open use current directory

Find out where your vim configuration file is

:echo $MYVIMRC

:!find / -name ’*vimrc*’ “(i1f the above produces no information)

Section 30 w

Folding Text

http://www.linux.com/archive/articles/114138
"Folds’ in text are a way to hide sections of text in a big document to make the document easier to read. When
the text is hidden the fold is said to be ’closed” and when the text in the fold is visible then it is ’open’.

30.1 Getting Help
View some help for folding
:help folding

30.2 Basic Usage
Create a fold which hides the next 2 lines
zf2j “(the fold 4s created and the tezt 4s hidden)
Open the current fold (where the cursor is)
Zo “(the fold is still there and can be closed again with ’zc’)
Open all the nested folds on the current line
z0
Make the current paragraph a fold
zfap

Open all folds in a document

zR

Create a fold from line 1 to 10
:1,10 fo

Close a fold (hide the contents of the fold)
zc

32

Delete the fold at the cursor
zd
Close all folds in the document
zM
Delete all folds
zE
Delete all the text in a fold (when the fold is closed)
dd

folding : hide sections to allow easier comparisons

zf} Fold paragraph using motion
v}zf Fold paragraph using visual
zf’a Fold to mark
zo Open fold
zc Re-close fold

30.3 Moving Between Folds
Move to the previous fold (even if it is open)
zk
Move to the next fold
2]
30.4 Creating Folds Automatically
Creates a fold at each indent level in the document
:set foldmethod=indent
Create folds in a document one by one with the ’zf” command

:set foldmethod=manual

30.5 Advanced Folds
A folding method

vim: filetype=help foldmethod=marker foldmarker=<<<,>>>

A really big section closed with a tag <<<
--- remember folds can be nested ---
Closing tag >>>

Working With Source Code

Section 31 w

Adjusts the indent level of pasted code to the file

Ip

Go to the definition or declaration of the function/var under the cursor
gd

Align braces in source code
[shift]+v, select lines, = “([shift]+v enters

Use the brace-block text objects to work with blocks of code

diB “(deletes everything between { and 2},

di} “(the same)
33

not

visual

mode)

tncluding

braces)

da) “(deletes everything between (and), including

Delete between quotation marks and enter new text
ci
Another way to get rid of tabs
:set expandtab|retab

Toggle source code folds

braces)

" “(the cursor can be anywhere within the quotation)

z1i “(a ’fold’ temporarily hides the content of a function

Fold code on indented sections

:set foldmethod=indent “(each tindentation level becomes a
Ezecute ‘'make’, and jump to the first error found
:make “(make 4s wusually wused for compiling c code)
Display the next or previous error
icn o:cp
31.1 Indenting And Formatting
View which program will perform indenting with the =" command
:set equalprg
(if the response is ’equalprg="then an internal formatter will be used)
Indent the whole file using the =" formatter
gg=G
Indent the current paragraph using the built in formatter
ap=
Indent the current brace {} block
al=
Reformat (break and fill lines) a bash comment (starting with #)
lap par ~(the par formatter leaves the ’#’ at the start of
31.2 Syntax Highlighting
See what type of source code Vim thinks the file is
:set filetype
(if the response is "filetype=" then Vim cant guess)
Tell Vim that the file is java source code
:set filetype=java “(this normally shouldnt be necessary)
Turn on syntax highlighting
:syntax enable
:syntax on “(doesnt respect the current colourscheme)

Turn off syntax highlighting (its pretty annoying really)
:syntax off
An example of setting your own highlighting

:syn match DoubleSpace

:hi def DoubleSpace guibg=#e0e0el
Force Syntaz coloring for a file that has no extension ﬁ

or method)

>fold ’)

the

lines)

:set syntax=perl

Change coloring scheme (any file in ~wvim/vim??/colors)
:colorscheme blue

Force HTML Syntaz highlighting by using a modeline
vim:ft=html:

Force syntax automatically (for a file with non-standard extension)

au BufRead ,BufNewFile */Content.IE?/* setfiletype html

31.3 Converting Highlighted Syntax To Html
View the help for converting highlighted syntax
:help TOhtml
Convert highlighted syntax to html (html opens in a new window)
:TOhtml

:runtime! syntax/2html.vim “~(the same, more or less)
Convert the current line to syntax highlighted html

:. TOhtml
Convert syntax to HT'ML using style sheets not tags

:let html_use_css = 1

:TOhtml
Convert with no line numbers, zhtml and css

:let html_number_lines = 0
:let use_xhtml = 1

:let html_use_css =1
Convert code to syntax-coloured HTML

:source $VIM/syntax/2html.vim “(untested)

31.4 C And Cpp
Format the next paragraph of code with the ’“indent’ ¢ code formatter

'}indent
:%!indent “(format the whole file)

31.5 Java

Although ’indent’ is designed for '¢’ code it does a reasonable job with Java code as well
Format the whole file with the external program ’astyle’

:hlastyle

(astyle appears to go crazy with anonymous inner java classes)
Format the current code block (between matching {}) with ’“indent’

li}indent “(see:"text objects" for an ezplanation of ’i}’)
Increase the indent of a code block

:set sw=1; >i}
Decrease the indent of a code block

y
1} 35

Set up the '=" command to format with ’astyle’
:set equalprg=astyle\ --option=yes\ -q

Use the lynz or 'links’ browser to view javadoc

Vim And Html

Section 32 w

Filter all html form elements into paste register

:redir @x*|sil exec ’g#<\(input\|select\|textarea\l/\=form\)\>#p’|redir
= END

:nmap ,z :redir @*<Bar>sil exec ’g@<\(input\<Bar>select\<Bar>textarea
= \<Bar>/\=fo

rm\) \>Qp’<Bar>redir END<CR>

Vim And Latex

Section 33 w

http://www.vmunix.com/vim/howto/latex.html

Set up a mapping to run BTEX on the current file

:map ,rl :!'latex %

Using The Shell

Section 34 1

Get output from other commands (requires external programs)
:r!'ls -R Reads in output of Is
:put=glob(’*x’) Same as above
:r lgrep ‘‘"ebay’’ file.txt Grepping in content
:20,25 'rot13 Rotl3 lines 20 to 25
lldate Same thing (but replaces/filters current line)

Ezxecute the previous shell command

:
Simple Shell script to rename files w/o leaving vim

$ vim

:r! 1s *.c

:%hs/\N(C.*x\) .c/mv & \1.bla
:w !'sh

:q!

34.1 Vim In Batch Mode

Batch mode means running vim from a bash shell non-interactively.

Command line tricks
gvim -h Help
““ls | gvim -’ Edit a stream!!
cat xx | gvim -¢"v/"\d\d\—"[3-9]/d 7 - filter a stream
gvim -o filel file2 Open into a split

Execute one command after opening file
gvim.exe -c "/main" joe.c : Open joe.c & jump to "main"
Ezecute multiple command on a single file

vim -c "%s/ABC/DEF/ge | update" gélel.c

http://www.vmunix.com/vim/howto/latex.html

Automate editing of a file (Ex commands in convert.vim)
vim -s "convert.vim" file.c

Load VIM without .vimrc and plugins (clean VIM)
gvim -u NONE -U NONE -N

Access paste buffer contents (put in a script/batch file)
gvim -c ’normal ggdG"*p’ c:/aaa/xp

Print paste contents to default printer

gvim -c ’s/~/\=0@%/|hardcopy!lq!’

34.2 Piping Text Fragments
Pipe lines 22,25 though the ‘sed’ bash shell command

:22,25w !sed ’s/e/E/g’ “(the original lines are not changed)
Display all following lines without any "~ carat characters

c., 8w !sed ’s/"//g’ “(the lines are piped through ’sed ’)
Save lines after this one in ‘new.txt’ after removing comment (#) lines

:.,%w lgrep -v ’"#’ >> new.txt
Pipe all lines from current to next blank line to sed

:.,/" *x$/w ! sed ’s/e/E/g’

:.,/"\s$/w ! sed ’s/e/E/g’ “(the same, almost)
Pipe all lines from current back to previous blank line to ’sed’
:.,/"\s$/w ! sed ’s/e/E/g’ ~“(prompts the wuser to swap order)
View lines in this and next 2 paragraphs with lines having “tree’
!3ap<backspace>w !grep -v tree | less
Compile the current paragraph with pdfiater and save as ‘new.pdf’
lap<backspace>w !pdflatex -jobname new
Pipe from the line after the 1st previous line having a '*’ star To the line before the next line containing a ’,’

comma

?*x?+1,/,/-1w !sed ’s/e/E/g’ “(thtis is quite a complexz rTange)

34.3 Gotchas

In the following recipes, the space before the ’!” exclamation mark is very important, since without it the
command does something very different and possibly destructive.
Remember the space

:22,25w!sed ’s/e/E/g’ “(No!!! wrong, may truncate the current file)

- Section 35
Using External Programs w

Sort the current file
:h!sort -u

Sort the current paragraph (before and after the cursor)
lapsort -u

Look up help for the keyword under the cursor
K

Change the program used to look up keyword help with?):/f(’

:set keywordprg=man
Map ’,ee’ to execute the word under the cursor in bash
:map ,ee :! <cword>
Ezecute 2 shell commands (change to parent folder, and show the file tree.txt)

:lecd ..; cat tree.txt

- - Section 36
Switching Between Modes w

Switch to normal mode from command mode

:normal

- Section 37
Visual Mode w

Visual is the newest and usually the most intuitive editing mode
Select a line visually

Vv “(then wuse ’k’ and ’j°’ to select limnes above and below as well)

Reselect last visual mode selection

gv
Operating a Recording on a Visual BLOCK

1) define recording/register

qq:s/ to/ from/g~Mq

2) Define Visual BLOCK

v}

3) hit : and the following appears
0L,

4) Complete as follows

:’<,’>norm Qq

using the visual mode
v Enter visual mode
V Visual mode whole line
<C-V> Enter VISUAL BLOCK mode
gv Reselect last visual area (ultra)
o Navigate visual area
““xy or ’’+y Yank visual area into paste buffer
V)% Visualise what you match
V}J Join Visual block (great)
V}gJ Join Visual block w/o adding spaces
‘[v‘] Highlight last insert
:%s/\%Vold/new/g Do a substitute on last visual area

Visual searching
cvmap // y/<C-R>"<CR> ~(search for wisually highlighted text)

:vmap <silent> // y/<C-R>=escape (@", ’\\/.x$"~"[]’)<CR><CR> : with
= spec chars

Pull Visually Highlighted text into LHS of a substitute

:vmap <leader>z :<C-U>%s/\<<c-r>*\>/

38

Vim Sessions

Section 38 w

Following 4 maps enable text transfer between VIM sessions

:map <f7> :’a,’bw! c:/aaa/x
:map <f8> :r c:/aaa/x

:map <f11> :.w! c:/aaa/xr<CR>
:map <f12> :r c:/aaa/xr<CR>
:ab php

‘map ,

Save text to file x

Retrieve text

Store current line

Retrieve current line

List of abbreviations beginning php
List of maps beginning ,

Command Mappings

Section 39 w

http://vim.wikia.com/wiki/Mapping keys_in_Vim_-_Tutorial_(Part_1)

A 'mapping’ allows the user to use a key or keys to carry out a command or a series of commands. They are like
’shortcuts’. Put mappings in ~/.vimre (without the first colon) to make them permanent.

Show the vim help for creating command mappings
:help key-mapping

Show current macros, or mappings
:map

Write current mappings and settings to file ‘'map.txt’
:mk map.txt

Map [shift]+s to delete a line.
:map <S-s> dd

:map <C-s> dd “([control J+s

:map <A-s> dd “([alt]+s)
Remowve the mapping for 'hh’
unmap hh
Map the function key f5 to delete a line
:map <fb5> dd
Map °,hh’ to insert ‘hello’ (from insert mode)
:map! ,hh hello
Create a mapping which calls a command
:map! ,test :Test
Map a macro in command mode
:cmap
Make a macro in insert and command line mode
: Imap
Make a macro in insert mode

:imap

)

For use in Maps

<CR> Carriage Return for maps
<ESC> Escape
<LEADER> Normally
<BAR> — pipe
<BACKSPACE> Backspace
<SILENT> Nghanging shell window

http://vim.wikia.com/wiki/Mapping_keys_in_Vim_-_Tutorial_(Part_1)

http://www.vim.org/htmldoc/intro.html#),3CBar/3E
all special keys

mapping special keys
<esc> The key
<enter> or <cr> or <return> The key
<space> The space key
<left> The cursor left
<right> The cursor right

39.1 Using Functions In Mappings

To use a Vim function within a mapping, the idiom <C-R>=functionname(...) needs to be used
Map [f2] to insert the current date and time after the cursor

:map <F2> a<C-R>=strftime ("%c")<CR><Esc>
Map ’,,r° to type the start of a replace with the word under the cursor
:map ,,r :%s/<C-R>=expand("<cword>")<cr>//gc<left><left><left>

Cword, cWORD, cfile

<cword> 1is the word under the cursor
<cfile> is the path under the cursor

39.2 Example Mappings

Map ,ww to write out text from the cursor until ’big’ to the file junk.txt’
map ,ww !/big<enter><backspace>w junk.txt<enter>

Mapping two commands, ’;mm’ saves the file and goes to the next word ’big’
map ,mm w <bar> /big<cr>

Map ’,ll” to underline the current line with dashes

map ,11 yyp:s/[1x$// \I| s/[1*x$// \I| s/ 1/-/g \| s/- /--/g<cr>
(the dashed underline will have gaps if the words have 2 space gaps)

. . Section 40
Abbreviations 1

Abbreviations are very similar to mappings but are activated in 'insert’ mode, instead in 'normal’ mode Abbre-
viations are essentially a way to avoid typing repetitive things. Be happy, this is good.

The abbreviation is activated after typing a space or newline after the abbreviation.

Automatically exchange the word ’big’ for 'very large and bulky’

:abbr big very large and bulky “(this 4is called an abbreviation)
Turn off an abbreviation
:unab big
Show all abbreviations which are currently available
:abbr
Define an abbreviation which inserts several lines of text
:ab poem froth and foam<cr>here alone<cr>
Create an abbreviation which inserts text then searche for 'rain’
:ab sss snake<esc>/rain<cr>
Put an abbreviation in the vimre’ file, without the colon ’:’

ab rrr rain

40

http://www.vim.org/htmldoc/intro.html#%3CBar%3E

- Section 41
Creating New Commands w

A command is anything written after a colon ’:’. New commands can be created in Vim. User defined commands
must begin with a capital letter.
Define the command ’Boo’ to delete the current sentence

:com! Boo normal das

(normal switches from command to normal mode) (this command can be used by typing ’ [Esc| :Boo’)
A command "Test’ which find the next occurance of '==’

:com! Look normal /==<cr>

:com! Look normal /==/<cr> “(ezactly the same)
A command "TT’ which puts ’tree’ after the next line starting with '#’
:com! TT normal /~ x#<cr>otree<esc>
The command 'J” adds tree’ after next blank line and saves the file
com! J normal /~ *$/<cr>otree<esc>:w<cr>
The command "Gr’ adds ’grass’ 2 lines after the next blank line
com! J normal /~ *$/+2<cr>otree<esc>
View help on how to make user defined commands
:help command
See the currently user defined commands

:command

:com “(the same)

Delete all new commands which have been defined by the user
:comclear

Create a new command 'Folder’ which lists the files in the current folder

:com Folder !1s
:command Folder !1s “(the same)

:command! Folder !1s “(the same, but over-rides an ezisting command)
Define command ’squeeze’” which combines multiple consecutive empty lines

:command! Squeeze g/ \sx*x$/,/\S/-jls/.*x//
Define command ’Nocomment’ which lists the current file without comments

command! Nocomment !cat % | grep -v ’° *#’ | less

(this command can be executed with Nocomment’ within vim)
Define a command which shows lines having only uppercase letters

command! Upper !sed -n ’;/" *[[:upper:] I\{2,\}$/p’ % | 1less
Delete everything after the current line to the end of the file
:com Ddel +,%d

41

41.1 With Arguments
Rename the current buffer with filename completion

:com -nargs=1 -bang -complete=file Ren f <args>|w<bang>
Define a command ’Say’ with one argument which just echos the given text

:com -nargs=1 Say :echo "<args>"

:command -nargs=1 Say :echo "<args>" “(the same)

(This command can be invoked with :Say text)
Create a command ’Book bookfile” which edits a text file

command! -nargs=1 Book arge ~/<args>.txt

So we can use this command by typing ":Book tree’ to edit the file ~/tree.txt
Create a new command ’'Sing’ which accepts a variable number of arguments

com -nargs=x* 3ing

41.2 With Line Ranges
Define command 'Rep’ which replaces a range with the contents of a file

:com -range -nargs=1 -complete=file Rep <linel>-pu_|<linel>,<line2>d|r
= <args>|<linel>d

Define command 'Lines” which counts the number of lines in a range
:com! -range -nargs=0 Lines echo <line2> - <linel> + 1 "lines"

(this can be executed with ”:.;$ Lines’ for example)
A command Comp’ which pipes the given range to the ‘sed’

:com! -range -nargs=0 Comp <linel>,<line2>w !sed ’s/e/E/g’

:com! -range Comp <linel>,<line2>w !sed ’s/e/E/g’ “(the same)

(this could be executed with ":.,$ Comp’ for example)
Make a command to compile to pdf the given range and save as ‘new.pdf’

:com! -range Pdf <linel>,<line2>w !pdflatex -jobname new

special command paramters
<linel> The first line of the range, with ’-range’ option
<1ine2> Another line in the range
<bang>

41.3 Commands Using Commands

We can define new commands which can then be used in other new commands, for example:
Use a previous user-defined command in another for finding images

command! -nargs=1 Findi !find ~ -name ’*.<args>’
command! Findjpg Findi jpg

41.4 Commands And Mappings

Commands can use argument specified after the command name but mappings cannot (since they are entered in
‘normal” mode) Mappings can also use a previously defined command.

42

Section 42 w

Recording And Using Macros

A ’macro’ in vim is a series of commands which a user carries out while 'recording’. The user is then able to
replay that series of commands by invoking the macro. In vim, the names of macros are single letters and are
invoked with @n’ where 'n’ is the name of the macro.

Start recording a macro named ¢’

Qq
Stop recording a macro

q
Ezecute (replay) the macro

Cq
Repeat the macro
0@

macro commands
@q To execute
@@ To Repeat
5@@ To Repeat 5 times
qQ@qq Make an existing recording q recursive

Editing a register/recording
"qp “(display contents of register q (mormal mode))
<ctrl-R>q ~(display contents of register q (insert mode))
You can now see recording contents, edit as required

"qdd “(put changed contacts back into gq)

Qq “"(ezecute rTecording/register q)
Combining a recording with a map (to end up in command mode)

:nnoremap] @q:update<bar>bd

. R Section 43
Vim Functions w

These functions can be used in mappings, and scripts. User defined functions need to start with a Capital letter.*
Get help on the built-in functions for vim

:help functions “(an alphabetical function Llist)

:help function-1list “(function list categorized by purpose)
See all user defined functions
:functions
List the code for the Leapyear function
:function Leapyear
Delete the Leapyear function
:delfuncton Leapyear
Call a function for a range
:10,15call Func(...)
Redefine a function

:function! Func ()

vim functions
getline(".") Returns the text of the current line

line(".™) Returns the number of the current line
43

43.1 Creating New Functions
Function to delete duplicate lines

function! Del ()
if getline(".")
norm dd
endif
endfunction

= getline(line(".") - 1)

A function to save word under cursor to a file

function! SaveWord ()

normal yiw

exe ’:lecho ’.@0.° >> word.txt’
endfunction
map ,p :call SaveWord()

- : Section 44
Vim Programming w

Vim, like all good overblown software, has its own scripting language built into it, which may be of use if you wish
to automate some editing process and you are unable to do it with mappings, macros, abbreviations, user-defined
commands, bash shell filters, or any of the other myriad tools available with vim.

View some help for programming with vim

eval.txt
Insert 1p range using vim
:for i in range(1,255) | .put=’192.168.0.°.1i | endfor

))

To combine statements on one line use —’ Reduce the current line by one

Increase the current line by one
+
Put the cursor on the 15th character of the current line)

:call cursor(line("."), 15)

44.1 Variable Assignment

Set s to the line number of the current line
let s = line(".")

Subtract 1 from a variable s

let s=s-1

. R Section 45
Vim Functions 1

Get help for the ’line’ function
help 1line

Display the line number of the last line in the file using ‘line’
:echo line(’$7)

Insert the line number of the last line into the document.
:.put=line(’$’)

values usable with the ’line’ function
The cursor position

$ The last line in the current buffer |
’x Position of mark x (if the mark is not set, 0 is returned) |

w0 First line visible in current window

w$ Last line visible in current window
44

String Variables

Section 46 w

Set the variable s to be the string ’grass’ and display it

:let s=’grass’ | echo s

Set s to be ‘eat’ and display the string length of s (which is '3’)

:let s=’eat’ | echo strlen(s)

Array Variables

Section 47 w

In the vim language, arrays are called ’lists’
Useful list functions

tlet r =
= list
:if empty(list)
:let 1 = len(list)
:let big = max(list)
:let small = min(list)
:let xs = count(list,
= list
:let 1 = index(list,
:let lines = getline (1,
:call append(’$’, lines)
:let list = split("a b c")
:let string = join(list, ’,
:let s = string(list)
eval.txt [Help] [RO]

call (funcname, list)

’X,)

’X’)
10)

”)

47.1 Get Help For Lists

View extensive information about list variable in vim

thelp List “(notice the capital
47.2 List Information
Display the number of elements in a list
echo len(1l)
47.3 Creating Lists
Create a new list (array) with 4 elements
:let mylist = [1, two, 3, "four"]

Create a new list with no elements

:let emptylist = []

47.4 Getting Elements From Lists

call a function with an argument

check if list is empty
number of items in list
maximum value in list
minimum value in list
count nr of times ’x’ appears in
index of first ’x’ in list
get ten text lines from buffer
append text lines in buffer
create list from items in a string
create string from list items
String representation of 1list
372,15

L’ 4n ’List ’)

Set a variable “item’ to the value of the 1st element of the list

:let item = mylist [0]

Set a variable to the 3rd element of a list variable
:let i = mylist [2]

Get the last item from the list

:let 1 = alist[-1]

45

47.5 Joining Lists Together
Join or concatenate 2 lists together
:let longlist = mylist + [5, 6]
Add 2 new elements to a list
:let mylist += [7, 8]
Get all elements from a list from the 3rd to the last
:let shortlist = mylist[2:-1]

:let shortlist = mylist[2:] “(the same)
Assign variable a the 1st value and variable b the 2nd value

:let [a, b] = mylist

47.6 Changing List Items
Set the 5th element of the list to “grass’
:let list[4] = "grass"

— - Section 48
Dictionaries w

Dictionaries are what are sometimes known in other languages as "hashes’ or 'associative arrays’. They a set of
items, each of which has a key and a value
View good help for the dictionary data type, notice the capital D

help Dictionary
Loop over a dictionary

:for key in keys(mydict)
echo key . ’: ’ . mydict[key]
:endfor

Section 49 w

If Tests

Test if the variable s’ consists entirely of whitespace
if s 17 ""\\sx*$"
endif

Test if the variable s’ equals 0

if s == 0

endif

Section 50
FExze Or Eval 1

In vim the classic ’eval’ statement is called 'exe’. It allows you to exectute some vim script code which has been
constructed from a string
Ezecute a new vimscript command

:exe ’let sum = ’ . join(anrlist, ’+°)

46

50.1 Loops
A for loop to insert an ip range using vim

:for i in range(1,255) | .put=’192.168.0.°.1 | endfor
Loop through each item in ’list” calling a function

:for item in 1list
call Doit(item)

:endfor
While loop
while p > O

endwhile

Section 51 w

Other Stuff

Edit a script that’s somewhere in your path.

vim ‘which scriptfile

vim $(which scriptfile) “(the same)
Lazy man’s vim

function v { if [-z $1]; then vim; else vim *$1x*; fi }
Download a sequence of vim patches

seq -f"ftp://ftp.vim.org/pub/vim/patches/7.1/7.1.%03g" 176 240 | xargs
= -1 {} wget -c {};

; Section 52
Rayninfo w

This section includes many recipes from rayninfo.co.uk
\zs and \ze regex delimiters :h /\zs

/<\zs[">]*\ze> ~(search for tag contents, dignoring chevrons)

zero-width :h /\@Q=
/<\@<=[">]*>\@= Search for tag contents, ignoring chevrons
/<\@<=_[">]*>\@= Search for tags across possible multiple lines

searching over multiple lines _ means including newline
/<!'--_p\{-}--> Search for multiple line comments
/fred_s*joe/ Any whitespace including newline
/bugs\ (_.\)*bunny Bugs followed by bunny anywhere in file
-h \. Help

Search for declaration of subroutine/function under cursor

:nmap gx yiw/"\(sub\<bar>function\)\s\+<C-R>"<CR>
Find replacement text, put in memory, then use \zs to simplify substitute

:hs /"N CLT L IN+\) L *+\zsxx/\1/
Pull word under cursor into LHS of a substitute

:nmap <leader>z :%s#\<<c-r>=expand ("<cword>")<cr>\>#
Substitute singular or plural

:’a,’bs/bucket\(s\)*/bowl\l/gic A7

All following performing similar task, substitute within substitution Multiple single character substitution in a
portion of line only

:%s,\(all/.*\)\@<=/,_,g ~(replace all / with _ AFTER "all/")
Same thing

:s#all/\zs.*x#\=substitute (submatch(0), ’/’, ’_’, ’g’)#
Substitute by splitting line, then re-joining

cs#all/#& M#|s#/#_#gl-j!
Substitute inside substitute

:hs/.*%/\="cp ’.submatch(0).’ all/’.substitute(submatch(0),’/’,’_’,’g’)/

Storing glob results (note must use APPEND) you need to empty reg a first with qaq.
Operate until string found

d/fred/ “(delete until fred)
y/fred/ “(yank until fred)
c/fred/e “(change until fred end)

How to have a variant in your .vimre for different PCs

if $COMPUTERNAME == "NEWPC"
ab mypc vista

else

ab mypc dell2b

endif

Vertically split current file with other.php
:vsplit other.php

VISUAL MODE (easy to add other HTML Tags)
Wrap around VISUALLY selected Text

:vmap sb "zdi<C-R>z<ESC>
Wrap <?= 2> around VISUALLY selected Text

:vmap st "zdi<?= <C-R>z 7><ESC>

more g stuff
gf Open file name under cursor (SUPER)
:nnoremap gF :view <cfile><cr> Open file under cursor, create if necessary
ga Display hex,ascii value of char under cursor
ggVGg? Rot13 whole file

gegg?G Rotl3 whole file (quicker for large file)
:8 | normal VGg? Rot13 from line 8
:normal 10GVGg? Rot13 from line 8

<C-A>,<C-X> Increment,decrement number under cursor (not win32)
<C-R>=5*5 Insert 25 into text (mini-calculator)

Make all other tips superfluous

th 42 ##(also http://www.google.com/search?q=42)
:h holy-grail
:h!

Disguise text (watch out)
ggVGg? ~(rot13 whole file (toggles))

:set rl! “(reverse lines right i§ left (toggles))

:g/"/m0 “(reverse lines top to bottom (toggles))
Display RGB colour under the cursor eq #445588

:nmap <leader>c :hi Normal guibg=#<c-r>=expand("<cword>")<cr><cr>

map <f2> /price only\\|versus/ :in a map need to backslash the \
Type table,,, to get <table>< /table> ### Cool ###

imap ,,, <esc>bdwa<<esc>pa><cr></<esc>pa><esc>kA
Simple PHP debugging display all variables yanked into register a

iab phpdb exit ("<hr>Debug <C-R>a ");
Using a register as a map (preload registers in .vimrce)

:let @m=":’a,’bs/"

:let @s=":%!sort -u"

Useful tricks
‘‘ayyGa Execute ”Vim command” in a text file
yy@" Same thing using unnamed register
ue. Execute command JUST typed in
"ddw Store what you delete in register d
"ccaw Store what you change in register ¢

Number lines
:new | r!nl #
Quick jumping between splits

map <C-J> <C-W>j<C-W>_

map <C-K> <C-W>k<C-W>_
Delete first 2 characters of 10 successive lines
0<c-v>10j21d

How to copy a set of columns using VISUAL BLOCK Visual block (AKA columnwise selection) (NOT BY
ordinary v command)

<C-V> then select "column(s)" with motion commands (win32 <C-Q>)

then c,d,y,r etc
How to overwrite a visual-block of text with another such block Move with hjkl etc

Pick the first block: ctrl-v move y

Pick the second block: ctrl-v move P <esc>
Launching Win IE
:nmap ,f :update<CR>:silent !start c:\progra~l\intern~1\iexplore.exe
= file://%:p<CR>
:nmap ,i :update<CR>: !start c:\progra~l\intern~1\iexplore.exe <cWORD><
= CR>
FTPing from VIM
cmap ,r :Nread ftp://209.51.134.122/public_html/index.html

cmap ,w :Nwrite ftp://209.51.134.122/public_html/index.html

gvim ftp://WWW.somedomain.com/in%gx.html # uses netrw.vim

Appending to registers (use CAPITAL) Yank 5 lines into ”a” then add a further 5
n a5yy

10 j
n A5yy

[I : show lines matching word under cursor <cword> (super)
Conventional Shifting/Indenting

:la,’b>>
Visual shifting (builtin-repeat)

vnoremap < <gV

:vnoremap > >gv
Block shifting (magic)

>iq

>aq
Also

>% and <%

Redirection & Paste register *

:redir @ Redirect commands to paste buffer
:redir END End redirect
:redir >> out.txt Redirect to a file

Working with Paste buffer

"xyy “(yank curent line to paste)

"*p “(insert from paste buffer)

Yank to paste buffer (ex mode)

:’a,’byx* : Yank range into paste
2hy* : Yank whole buffer into paste
LYk : Yank Current line to paster

Filter non-printable characters from the paste buffer — Useful when pasting from some gui application

:nmap <leader>p :let @*x = substitute(@x*,’[~[:print:]J]’,’’,’g’)<cr>"*p

Re-Formatting text
gq} Format a paragraph
gqap Format a paragraph
ggVGgqg Reformat entire file
Vgq Current line

Break lines at 70 chars, if possible after a ;

18/ N{,69\};\sx\ | .\{,69\}\s\+/&\r/g
Guim’s use of external grep (win32 or *niz)

:grep somestring *.php : creates a list of all matching files
Use :cn(ext) :cp(rev) to navigate list

:h
grep 50

Using vimgrep with copen

:vimgrep /keywords/ *.php

:copen
GVIM Difference Function (Brilliant)

gvim -d filel file2 ~(wvimdiff (compare differences))
dp “("put" difference wunder cursor to other file)

do ~("get" difference under cursor from other file)

7

complex diff parts of same file :1,2yank a — 7,8yank b :tabedit — put a — vnew — put b :windo diffthis
\v or very magic (usually) reduces backslashing

/codes\(\n\|\s\) *where : normal regexp

/\vcodes (\n|\s) *where : very magic

pulling objects onto command /search line (SUPER)
<C-R><C-W> Pull word under the cursor into a command line or search
<C-R><C-A> Pull WORD under the cursor into a command line or search
<C-R>- Pull small register (also insert mode)
<C-R>[0-9a-z] Pull named registers (also insert mode)
<C-R>Y Pull file name (also #) (also insert mode)
<C-R>=somevar Pull contents of a variable (eg :let sray="“ray[0-9]")

find where an option was set
:scriptnames List all plugins, _vimrcs loaded (super) ‘
:verbose set history? Reveals value of history and where set ‘

:function List functions
:func SearchCompl List particular function

Making your own VIM help
thelptags /vim/vim64/doc : rebuild all *.txt help files in /doc

thelp add-local-help
Running file thru an external program (eg php)
map <f9> :w<CR>:!c:/php/php.exe J%<CR>

map <f2> :w<CR>:!perl -c %<CR>
Capturing output of current script in a separate buffer

:new | r!perl # ~(opens new buffer ,read other buffer)
:new! x.out | r!perl # ~(same with named file)

:new+read!ls
Create a new buffer, paste a register ”7q” into it, then sort new buffer
:new +put ql’%!sort

Inserting DOS Carriage Returns

:hs/$/\<C-V><C-M>&/g “(that s what you type)
:%s/$/\<C-Q><C-M>&/g “(for Win32)
chs/$/\"M&/g “(what you’ll see where "M 4is ONE character)

Automatically delete trailing Dos-returns,whitespace 51

autocmd BufRead * silent! Y%s/[\r \tl\+$//

autocmd BufEnter *.php :%s/[\t\rl\+$//e
Perform an action on a particular file or file type

autocmd VimEnter c:/intranet/note011.txt normal! ggVGg?

autocmd FileType *.pl exec(’set fileformats=unix’)
Retrieving last command line command for copy € pasting into text

i<c-r>:
Retrieving last Search Command for copy & pasting into text

i<c-r>/
” more completions <C-X><C-F> :insert name of a file in current directory
” Substituting a Visual area ” select visual area as usual (:h visual) then type :s/Emacs/Vim/ etc :’<,">s/Emacs/Vin
: REMEMBER you dont type the '<.”> gv : Re-select the previous visual area (ULTRA)
” inserting line number into file :g/" /exec “s/” /" .strpart(line(”.“).” 7, 0, 4) :%s/" /\=strpart(line(”.«).” 7, 0, 5)
Y%s/” /\=line(’.). "’
Numbering lines VIM way

:set number “(show line numbers)
:map <F12> :set number!<CR> ~(Show linenumbers flip-flop)

:%hs/~/\=strpart(line(’.’)." ",0,&ts)
Numbering lines (need Perl on PC) starting from arbitrary number
:’a,’b!perl -pne ’*BEGIN{$a=223} substr($_,2,0)=8%a++’

Produce a list of numbers Type in number on line say 223 in an empty file qqmnYP‘n"Aq : in recording q repeat
with Qq
Increment existing numbers to end of file (type <c-a> as 5 characters)

:.,$g/°\d/exe "normal! \<c-a>"
Advanced incrementing
http://vim.sourceforge.net/tip_view.php?tip_id=150
Advanced incrementing (really useful) put following in _vimre
let g:I=0
function! INC(increment)
let g:I =g:I + a:increment
return g:1I
endfunction
Eg create list starting from 223 incrementing by 5 between markers a,b

clet I=223

:’a,’bs/~/\=INC(5)/
Create a map for INC

cab viminc :let I=223 \| ’a,’bs/$/\=INC(5)/
Generate a list of numbers 23-64

023<ESC>qqYp<C-A>q40@q

editing/moving within current insert (Really useful)
<C-U> Delete all entered
<C-W> Delete last word
<HOME><END> Beginning/end of line
<C-LEFTARROW><C-RIGHTARROW> Jump one word backwards/forwards
<C-X><C-E>,<C-X><C-Y> _, Scroll while staying put in insert

o

Encryption (use with care: DON’T FORGET your KEY)

: X “(you will be prompted for a key)
:h X
Modeline (make a file readonly etc) must be in first/last 5 lines

// vim:noai:ts=2:sw=4:readonly:
" vim:ft=html: : says use HTML Syntax highlighting

:h modeline

Creating your own GUI Toolbar entry amenu Modeline.Insert\a\ VIM\modeline <Esc><Esc>ggOvim:ff=unix
ts=4 ss=4<CR>v im60:fdm=marker<esc>gg
Use this function with

:g/~/ call Del()

Digraphs (non alpha-numerics)
:digraphs Display table
:h dig Help
i<C-K>e’ Enters
i<C-V>233 Enters (Unix)
i<C-Q>233 Enters (Win32)
ga View hex value of any character

Deleting non-ascii characters (some invisible)
:%s/ [\x00-\x1£\x80-\xff]/ /g Type this as you see it
:%s/ [<C-V>128-<C-V>255]//gi Where you have to type the Control-V
:%s/[-1//gi Should see a black square & a dotted y
:%s/ [<C-V>128-<C-V>255<C-V>01-<C-V>31]//gi All pesky non-asciis
:exec "norm /[\x00-\x1f\x80-\xff]/" Same thing

Pull a non-ascit character onto search bar

y1/<C-R>"

/["a-zA-Z0-9_[:space:][:punct:]] : search for all non-ascii

All file completions grouped (for example main_c.c)

e main_<tab> “(tab completes)
gt “(open file under cursor (normal))
main_<C-X><C-F> “(include NAME of file in tezt (insert mode))

Complex Vim, swap two words

:%hs/\<\(on\|off\)\>/\=strpart ("offon", 3 *x ("off" == submatch(0)), 3)/g
Swap two words

:vnoremap <C-X> <Esc>‘. ‘gvP‘‘P
Swap word with next word

nmap <silent> gw "_yiwes/NAONG#ENWNH\N) VOV _WA+H\) N (\w\+\) /\3\2\1/<cr><c-
= o0><c-1>

Convert Text File to HTML
:runtime! syntax/2html.vim “(convert tzt to html)

:h 2html
53

:set noma (non modifiable) : Prevents modifications

:set ro (Read Only) : Protect a file from unintentional
= writes

tags (jumping to subroutines/functions)
taglist.vim Popular plugin
:Tlist Display Tags (list of functions)
<C-]1> Jump to function under cursor

Displaying “non-asciis”

:set list

:h listchars

How to paste “normal commands” w/o entering insert mode
:norm qqy$jq

Delete without destroying default buffer contents

"_d “(what you’ve ALWAYS wanted)

"_dw “(eg delete word (use blackhole))

Pull full path name into paste buffer for attachment to email etc

nnoremap <F2> :let Q@x=expand ("%:p")<cr> ~(2? error)
nnoremap <F2> :let Q@x*=substitute(expand ("%:p"), "/", "\\", "g")<cr> -(
= win32)

Reproduce previous line word by word

imap] @GQ@<ESC>hhkyWjl?@Q@Q@<CR>P/QQ@@<CR>3s

nmap] 1@@@<ESC>hhkyWjl?@e@<CR>P/@@Q<CR>3s
Programming keys depending on file type

rautocmd bufenter *.tex map <F1> :!latex %<CR>

autocmd bufenter *.tex map <F2> :!xdvi -hush %<.dvi&<CR>
Just Another Vim Hacker JAVH
vim -c ":%shs*%Cyrnfr)fcbafbe[0enz (Zbbyranne%|:%s) [[()])-)Iglnorm Vg?"
Read Vimtips into a new vim buffer (needs w3m.sourceforge.net)
:tabe | :r ! w3m -dump http://zzapper.co.uk/vimtips.html
Commands to neutralise < for HT'ML display and publish ~ Use yy@” to execute following commands
tw!lsav! vimtips.html|:/"__BEGIN__/,/ " __END__/s#<#\<#g|:w!|:!vimtipsftp

- - - Section 53
Using Microsoft Crippleware 1

Allow use of F10 for mapping (win32)
set wak=no “(:h winaltkeys)
Make it easy to update/reload _vimrc

:nmap ,s :source $VIM/ _vimrc
:nmap ,v :e $VIM/_vimrc

e $MYVIMRC “(edits your _Uimr§4whereever it might be)

Reading Ms-Word documents, requires antiword

:autocmd BufReadPre *.doc set ro
:autocmd BufReadPre *.doc set hlsearch!

:autocmd BufReadPost *.doc %!antiword "3"
Using gVIM with Cygwin on a Windows PC

if has(’win327)
source $VIMRUNTIME/mswin.vim
behave mswin

set shell=c:\\cygwin\\bin\\bash.exe shellcmdflag=-c shellxquote=\"

endif

Vim People

Section 54 1

bill
joy wrote the vi text editor, which built apon ’ex’
bram
moolenaar created the vim editor
david
rayner david at rayninfo.co.uk wrote some good tips about using the vim editor

Information Sources

Section 55 w

http://groups.google.com/group/vim_use
a users newsgroup
comp.editors
a text editor newsgroup
http://vim.wikia.com/
the vim wiki
http://www.newriders.com/books/opl/ebooks/0735710015.html
a vim book
http://vimdoc.sourceforge.net/cgi-bin/vim2html2.pl
searchable docs
http://gav.brokentrain.net/projects/vimtips/vimtips.pdf
some printable tips

55

bill
bram
david
http://groups.google.com/group/vim_use
comp.editors
http://vim.wikia.com/
http://www.newriders.com/books/opl/ebooks/0735710015.html
http://vimdoc.sourceforge.net/cgi-bin/vim2html2.pl
http://gav.brokentrain.net/projects/vimtips/vimtips.pdf

	Web Resources
	Tips
	Cheat Sheets

	The Crash Course
	Tips

	Getting Help
	The Vim Annoyances
	Traps

	Opening Files To Edit
	Editing Multiple Files
	Vim Tabs
	Opening Files In Tabs
	Closing Tabs
	Switching Tabs
	Editing In Multiple Windows
	Transfering Text From One File To Another

	Editing Remote Files
	Editing A Wiki With Lynx And Vim
	Editing With Encryption

	Saving Files
	Saving Chunks Of Files

	Filename Modifiers
	Vim Patterns
	Ex Commands
	Inserting Text With Ex
	Moving Text With Ex
	Deleting With Ex
	Copying With Ex
	Reformatting Lines With Ex
	The Ex Global Command
	The Command History

	Searching For Text
	Search And Replace
	Uppercase And Lowercase

	Text Indentation
	Automatic Indentation
	Manual Indentation
	My Favourite Settings

	Working With Text Data
	Sorting Text
	Csv Data Files

	Filtering Text
	Reformatting Text
	Moving Around
	Refering To Chunks Of Text
	Text Objects

	Inserting
	Inserting From The Web
	Inserting A File Into Itself
	Random Text

	Deleting
	Editing
	Repeating Edits
	The Edit Changes List

	Cut Copy And Paste
	Registers
	Appending Text To The Registers
	Pasting Registers
	The Numeric Registers
	Executing Registers

	Text Information
	Spell Checking
	Configuring Vim
	The Configuration File

	Folding Text
	Getting Help
	Basic Usage
	Moving Between Folds
	Creating Folds Automatically
	Advanced Folds

	Working With Source Code
	Indenting And Formatting
	Syntax Highlighting
	Converting Highlighted Syntax To Html
	C And Cpp
	Java

	Vim And Html
	Vim And Latex
	Using The Shell
	Vim In Batch Mode
	Piping Text Fragments
	Gotchas

	Using External Programs
	Switching Between Modes
	Visual Mode
	Vim Sessions
	Command Mappings
	Using Functions In Mappings
	Example Mappings

	Abbreviations
	Creating New Commands
	With Arguments
	With Line Ranges
	Commands Using Commands
	Commands And Mappings

	Recording And Using Macros
	Vim Functions
	Creating New Functions

	Vim Programming
	Variable Assignment

	Vim Functions
	String Variables
	Array Variables
	Get Help For Lists
	List Information
	Creating Lists
	Getting Elements From Lists
	Joining Lists Together
	Changing List Items

	Dictionaries
	If Tests
	Exe Or Eval
	Loops

	Other Stuff
	Rayninfo
	Using Microsoft Crippleware
	Vim People
	Information Sources

