The Perl Programming Language

«“»

Contents

1 Perl 12.4 Different Types Of Quotes
2 Learning Perl 12.5 Local Variables
3 Gotchas 12.6 Array Variables
4 Perl Documentation 12.7 String Variables

12.8 Here Documents
13 Matching Text With Regular Expressions
14 String Substitutions
15 Perl Special Variables
16 Using Files

16.1 Opening Files For Reading Or Writing

16.2 Write To A File

16.3 Copying Files

16.4 Creating A Temporary File

16.5 File Globbing
17 Using Folders Or Directories
18 Perl Standard Functions

18.1 Writing Perl Functions

18.2 Importing Other Files
19 Text Files

4.1 Pod The Perl Documentation Format . .
5 Perl Modules
5.1 Using The Lwp Module.
5.2 Using The Cgi Module
Some Useful Modules
7 Windowing Programs
8 Cpan The Online Perl Code Repository
8.1 Using The Cpan Program
9 Perl One Line Scripts
10 Printing To Standard Output
11 General Perl Syntax
12 Loops
12.1 The Foreach Loop
12.2 If Statement
12.3 Global Variables.

(=2}
SO U A KRR WWWNNONRFRFRR
© © © © ©0wWowoowo=N~JJ~J-JD

The book is set out as a series of “recipes” in the style of a “cookbook” The perl language and its many modules
is a large topic and this document has only been just begun.

Section 1
Perl 1

[++] Perl is a language which was originally inspired by the Bash shell syntax, as well as by the idea of writing terse
but powerful programs. The name perl is not an acronym, since the creator, Larry Wall said he was looking for
any name with “positive connotations”. Perl initially rose to fame through it suitability for writing web-server cgi
scripts, since perl, like the unix shells, uses plain text as a kind of “data interchange format”. [4+] The weaknesses
of perl: it moves away from the Unix idea of using small programs to do one thing and linking them together with
FIFO pipes or streams; it has no built in windowing commands; Its ease of use may encourage bad programming
or attract bad programmers.

This section will concentrate on one line perl programs and integrating those programs with the bash shell.

Section 2 w

Learning Perl

http://www.perlmonks.org/
http://learn.perl.org/

Display the introduction to the perl documentation

man perl

perldoc perl “(the same)
Set variables f=“bi” and g=“sm a” using eval and a perl one liner.
eval $(perl -e ’print "f=bi;";print "g=\"sm a\"\n"’)

(this demonstrates “exporting” variables from perl to the parent shell)
Check syntaz of a perl one line program but dont run it

perl -wc -e ’print "\n\n"’

http://www.perlmonks.org/
http://learn.perl.org/

Section 3
Gotchas w

In a one-line script, print must use “\n” otherwise no output may appear
perl -e ’if (-d ".") { print "folder"; }’ ~“(doesnt seem to print ~’
= folder ’)
perl -e ’if (-4 ".") { print "folder\n"; }’ “(correct: prints ’folder
=)
Most one line perl scripts should be enclosed in single quotes
perl -e ’if (!$s) { print "s has no value\n" 1}’

(if double quotes were used, the shell would interpret “I$” first)
Lines read from standard input have a newline, so you must use ~l” or ’chomp’

1s | perl -ne ’if (-T "$_") {print "$_ text"}’ ~(doesnt work since $_
= has \n)

ls | perl -1lmne ’if (-T "$_") A{print "$_ text"}’ | 1less “(this
= works)
ls | perl -ne ’chomp; if (-T "$_") {print "$_ text\n"}’ | less ~(this
= works)
; Section 4
Perl Documentation w
Documentation for the perl language is installed along with the language
View the start page for the perl documentation
man perl
perldoc perl “(the same, more wuseful on ms windows)
some perl documentation pages
man perl The start page, contains references to lots and lots of docs ‘
man perlintro An introduction
man perltoc A table of contents of perl documentation ‘
Query the perl “frequently asked questions” documents for a word or phrase
perldoc -q eval
Save the entire “perlfunc” man page in the file “file.txt”
perldoc -T perlfunc > file.txt
Query the perl faqs for the word ’file’
perldoc -q ’ file’ “(’ file’ seems to work better than ’file ’)
Show the documentation for the CGI module
perldoc CGI “(these mnames are case-senstitive, "perldoc cgi" doesnt
= work)
man CGI

4.1 Pod The Perl Documentation Format

debian: perl-doc - to use the perldoc tool

The perl documentation format is known as the “pod” format and is accompanied by a variety of tools to
transform it to other documentation formats. The “perldoc” tool can be used to query the perl documentation
or the documentation for a module

Section 5
Perl Modules w

Modules are libraries of code which carry out specific task and save the programmer large amounts of time. One
of the strenghts of perl is the very large number of open-source modules available.

perl modules documentation
man perlmod How modules work ‘
man perlmodlib How to write and use a perl module ‘
man perlmodinstall How to install from CPAN ‘

Show all programs which have perl in the short description
apt-cache search ’perl’ | grep perl | sort | less
Use a module
perl -Mmodule -e "print ’hello’"
Use the CGI module with the “qw(:standard)” option
perl -MCGI=:standard -e "print header, h1(’hello’)"
The cpan program can be used to find and install perl modules
cpan
Some perl modules may be installed via debian packages or via cpan
sudo apt-get install libgd-barcode-perl
Check if the LWP module is installed
perl -MLWP -el
Print the version number of the LWP module

perl -MLWP -e ’print $LWP::VERSION’

5.1 Using The Lwp Module
http://www.darkspell.com/references/lwpcook.html
a set of “recipes” for using the Iwp module

Download a webpage for processing

perl -e ’use LWP::Simple; $doc = get "http://bumble.sf.net";’
Download and display a url using the lwp perl module

PERL -MLWP::Simple -e ’getprint "http://url"’
Check if a document exists

use LWP::Simple; if (head($url)) {# ok document exists?

5.2 Using The Cgi Module

Send error messages generated by perl to the browser

use CGI;

use CGI::Carp qw(fatalsToBrowser);
Print a very stmple document with the cgi module

use CGI;

my $cgi = new CGI;

print $cgi->header(); print $cgi->start_html ();
print "hello cgi"; print $cgi->end_html;

Indicate the title of the document using the cgi module

print $cgi->start_html(-title=> 3"testing cgi")

http://www.darkspell.com/references/lwpcook.html

Show the file parameter which was sent from an html form
use CGI;
my $cgi = new CGI;
print $cgi->header (); print $cgi->start_html();
print "the file parameter is:", $cgi->param(’file’);
print $cgi->end_html;

Access the cgi “environment” variables from perl

$sDocumentRoot = $ENV{’DOCUMENT_ROOQOT’};

Section 6
Some Useful Modules 1
some useful modules
HTML: :LinkExtor Extract links from html
File::Find Find files
Getopt::Long Get long and short options for a script
Cwd Print the current working folder
URI::URL Extract portions of a url
File::Basename Get the folder and filename
File::Path Make folders and delete them (mkpath, rmtree)
Benchmark Time how long perl code takes to run
DataDumper Creates a string representation of arrays and hashes
- - Section 7
Windowing Programs w
use tk; # #
. ; Section 8
Cpan The Online Perl Code Repository w

Cpan stands for ”comprehensive perl archive network” and is a repository of open-source code modules and
libraries which can be used to ease the task of the programmer. “cpan” is also an interactive program which
allows one to find and download these modules from a command line. The name “cpan” was modelled on “ctan”
which is the the ”comprehensive tex archive network”

http://www.cpan.org/
the cpan home site
http://sial.org/howto/perl/life-with-cpan/
some information about cpan

Run the “cpan” interactive program

cpan

sudo cpan “(as a quick fixz for permissions problems)
Show the documentation for the “cpan” module

perldoc CPAN

http://search.cpan.org/perldoc/CPAN ~(the same, in a web-browser)

“ecpanplus” 1s a more modern alternative to cpan
Install the latest version of cpan, with passive ftp for firewalls

perl -MCPAN -e ’$ENV{FTP_PASSIVE} = 1; install CPAN’

install CPAN ~“(the same, but from within the "cpan" program)
Search the cpan site for the documentation for the “LWP::UserAgent” package

http://search.cpan.org/perldoc/LWP::UserAgent
4

http://www.cpan.org/
http://sial.org/howto/perl/life-with-cpan/

8.1 Using The Cpan Program

problems with the “cpan” program:

* it doesnt tell you how big a module which you are going to install is.
*

Run the start up configuration for the cpan program

cpan
o conf init

Install “history” support for cpan (the up arrow obtain the previous command)

cpan
install Term::ReadKey Term::ReadlLine ##(didnt work)

Show the short help for the cpan program

h | 1less
Show details about the module whose name is CGI

m CGI “(the ezact module name must be written, case sensitive)
Show all modules which have the text “CGI” in their names

m /CGI/ | 1less “(this 4is a case insensitive search)

(problem, hitting ’q’ in less exits cpan)
Show information about the CGI module (using CPAN non-interactively)

perl -MCPAN -e’ CPAN::Shell->m("CGI")’ | less
Show a short description for all modules which have “CGI” in the name
perl -MCPAN -e’ CPAN::Shell->m("/cgi/")’ | less ~“(this 4is quite slow)

(these searches are Not case sensitive)
Show all available modules on cpan (approzimately 70000)

perl -MCPAN -e’ CPAN::Shell->m()’ | less ~“(this will be VERY slow)

(this command took 3 minutes on my ASUS netbook computer)

. . Section 9
Perl One Line Scripts 1

perl command line switches
-p Loops over each input line and prints it
-n Loops over each input line but doesnt print it
-1 Remove newline characters when read and restore when writing
-e Specify a perl expression to use, should be the last switch used

Print files in the current folder which are text files All the following versions do the same thing

ls | perl -1lne ’-T and print’ “(a posstible problem with spacey
= filenames)

ls | perl -1lne ’-T && print’

ls | perl -1lne ’print if -T’

ls | perl -1lne ’-T "$_" and print’

ls | perl -1lne ’if (-T "$_") {print "$_"1}°
ls | perl -1lne ’-T "$_" and print "$_"’

ls | perl -1lne ’-T $_ and print $_°
5

ls | perl -1lne ’(-T "$_") && (print "$_")’

ls | perl -ne ’chomp; if (-T "$_") {print "$_\n"}’

The large list of commands above, all of which do the same thing shows the flexibility of the perl syntax. Perl
allows certain things to be implied (just like in real language). The most common thing which is implied is “$_”
which can be translated as “that” and in a loop is generally the current line or variable.

Include 2 perl expressions with the -e expression

perl -e ’print "Hello";’ -e ’print " World\n"’
Print the 2nd field of the input (fields delimited by spaces)

echo a b ¢ | perl -lane ’print $F[1]’ ~(the -n switch loops without
= printing)

Print the 1st and 2nd fields of the input lines
echo a b ¢ | perl -lane ’print "@F[O..1]"’
Print the first field of a password file (splitting on the ’:’ f character
perl -F: -lane ’print $F[0] if !/“#/’ /etc/passwd
Print lines which dont contain the letter b’
(echo a; echo b) | perl -nle ’print if !'/b/’
Print the 3rd line of a file
perl -nle ’print if $. == 1’ file.txt
Print everyline except the first

perl -nle ’print unless $. == 1’ file.txt

— Section 10
Printing To Standard Output w

Print the results of 2 functions to standard output

print header (), footer();

print header, footer; “(the same)
Print a string and a function result to standard output
print "Your name is", name();
Print text in single quotes

perl -e ’print q{#!/usr/bin/perl}’ ~(the quotes dont appear?)

Section 11 7
General Perl Syntax

Section 12 -
Loops

12.1 The Foreach Loop
Loop through the elements of an array

@names = (’Larry’, ’John’, ’Jack’);
foreach (@names) { print $_."\n"; }

Loop through the elements of a literal list
foreach (qw/one 2 three 4/) { print $_."\n"; 1}

12.2 If Statement
The if statement has a c-like syntax

if (test) {... }

12.3 Global Variables
Import the variables $TRUE, $FALSE etc

do ’global.pl’; use vars qw($TRUE $FALSE $LANGUAGE) ;

12.4 Different Types Of Quotes

quote characters

qq Be used anywhere ” can be used

qw Quote a list of words, eg; qw/one 2 three/

12.5 Local Variables
Create a local variable

my $string;

12.6 Array Variables
Assign a list of text files in the current folder to the array @list
@list = grep { -f && -T } glob(*)
Show all text files in the current folder
perl -e ’print join "\n", grep {-T}r<*x>’

12.7 String Variables
Exit if the ”s” variable has no value

perl -e ’if (!$s) { die "s has no value"; 1}’
Join to strings together

$s = "green"."tree"; “($s is now ’greentree ’)
Append a ’here document’ to a string

$s .= <<ENDS;

A multiline

string variable
ENDS

Show the number of occurences of the ’s’ character in the variable “$text”

$i = ($text ="~ tr/s//)

12.8 Here Documents

[+] A ’here document’ is a way to print a large amount of text, or two assign that text to a variable without
having to use lots of quote characters, or escape special characters. The syntax of the "here document’ was based

on (but is slightly different to) the syntax of the Bash shell equivalent.
Assign a here document to a string

$s = <<ENDS;

A multiline

string variable
ENDS

Matching Text With Regular Expressions

Section 13 w

perl documentation for regular expressions

man perlrequick A quick introduction
man perlretut More indepth look

man perlre A complete reference

man perlreref A quick reference for perl regular expressions

Print file names in the current folder which have ’tree ’7m the name

ls | perl -lne ’print if /tree/’

ls | perl -1lne ’print if $_ =" /tree/’ “(the same but
= unnecessary)

ls | perl -1lne ’print($_) if ($_ =" /tree/)’ “(the same again)
Check if something doesnt match

"Hello World" !~ /World/

.] . Section 14
String Substitutions w

This section deals with replacing a string or a pattern with another string. This is one of perls particular
strengths, giving rise to its reputation for being a “text oriented” programming language
Delete all occurences of the new-line character in a string

$text =~ tr/\n//;

Perl Special Variables

Section 15 w

$_ this contains the current line when looping through the standard input, or else the current element
from any list. use “chomp” to remove the newline from this when necessary QQ

. ; Section 16
Using Files w

Test if a file exists and exit if it does not

if (!-e ’index.txt’) { die "the file doesnt exist"; 7}
Test if a file is actually a folder

if (-d "work") { print "’work’ is a folder\n" }
Test if a file is a plain text file

if (-T "index.txt") { print "index.txt is a text file\n" }

Test if a file can be executed

if (-x "index.sh") { print "index.txt is executable\n" }

-x "index.sh" and print "index.txt is executable\n" “(the same)

16.1 Opening Files For Reading Or Writing
Attempt to open a file for reading, and, if not, show the error message

open(FILE, ’index.txt’) or die "Can t open file: $!"; ~("$/!" has the
= error)

16.2 Write To A File

Write a string to a file (any previous file contents are destroyed)

$s="green tree";

open(F, ">index.txt") || die "Could not open the file for writing!";
print F "$s";
close F;

16.3 Copying Files
Copy a file to another name or exit if it is not possible

use File::Copy; my $f = "list";
copy($f, "$f.1") || die "could not copy file $f, because: $!";

$_

16.4 Creating A Temporary File
Create a temporary file, without ever knowing its name
use I0::File;
$fh = I0::File->new_tmpfile() or die "Couldnt make the temp file: §$
= 1",
Another way

use File::Temp

16.5 File Globbing

'file globbing’ refers to expanding a wildcard character (such as ™’ or ’?’) into a list of valid file names for the

local computer.
Display files with a ’.txt” extension in the current folder

perl -e ’for (glob("*x.txt")) { print $_."\n"}’

perl -e ’foreach (glob("x.txt")) { print $_."\n"}’ “(the same)
perl -e ’foreach $f (glob("*.txt")) { print $f."\n"}° “(the same again
=)

- - - Section 17
Using Folders Or Directories w

Print the directory part of a file name

use File::Basename;
print dirname ("/home/username/index.txt");

. Section 18
Perl Standard Functions 1

*
perldoc perlfunc
18.1 Writing Perl Functions

Append the result of a function to a scalar variable

$sOutput .= listData($configFile, $siteRoot, ’’);

18.2 Importing Other Files
Import the file “move.pl” which contains a function and is in the “lib” folder

require ’lib/move.pl’;

. Section 19
Text Files w

Change aaa for bbb and print each line

perl -p -e ’s/aaa/bbb/’ test.txt “(the file 4is mnot changed)
Change aaa for bbb and print each line

perl -pi -e ’s/aaa/bbb/’ test.txt “(the file IS changed)
Replace the word big with small in .txt files and backup to .bak

perl -p -i.bak -e ’s/\bbig\b/small/g’ *.txt
Recursive replacement of text in this and subdirectories

perl -p -i.bak -e ’s/\bbig\b/small/g’ $(find ./ -name "*.txt")

perl -p -i.bak -e ’s/\bbig\b/small/g’ $(grep -ril text *)
Insert one line in a text file

use Tie::File

	Perl
	Learning Perl
	Gotchas
	Perl Documentation
	Pod The Perl Documentation Format

	Perl Modules
	Using The Lwp Module
	Using The Cgi Module

	Some Useful Modules
	Windowing Programs
	Cpan The Online Perl Code Repository
	Using The Cpan Program

	Perl One Line Scripts
	Printing To Standard Output
	General Perl Syntax
	Loops
	The Foreach Loop
	If Statement
	Global Variables
	Different Types Of Quotes
	Local Variables
	Array Variables
	String Variables
	Here Documents

	Matching Text With Regular Expressions
	String Substitutions
	Perl Special Variables
	Using Files
	Opening Files For Reading Or Writing
	Write To A File
	Copying Files
	Creating A Temporary File
	File Globbing

	Using Folders Or Directories
	Perl Standard Functions
	Writing Perl Functions
	Importing Other Files

	Text Files

