
Parsing Virtual Machine and Script Language

Bumble.sf.net/books/pars

1 “About “pep” or “nom”

Pep, nom or pep/nom is a virtual machine and script language for parsing text patterns
(languages). Pep/nom is designed as an alternative to tools such as Lex, Yacc, Flex,
Bison or ANTLR.

This folder contains various files and folders relating to the pattern-parser virtual machine
and script language (”pep” - Parsing Engine for Patterns). This is an experimental,
but powerful, and I believe, original approach to parsing context-free languages (text
patterns). It may seem an outlandish claim, but this tool could revolutionise the way
that software is created, and patterns are recognised.

2 Download

You can download a .tar.gz file of the entire system (plain c machine and inter-
preter - with debugger, translation scripts - in the tr/ folder and example scripts in
the eg/ folder) Current download url: https://sourceforge.net/projects/bumble/

The README.txt contains instructions for compiling the code. [last update to tar.gz

file: 13 sept 2021]

I need to put this onto a Git host.

3 Documentation

The main documentation file about the machine and language is /books/pars/pars-book.txt
(somewhat disorganised). An html version of that document can be seen at /books/pars/pars-book.html
which is generated by the “pep” script /books/pars/eg/mark.html.pss . Also the file
“pep.c” /books/pars/object/pep.c source code contains documentation. The exe-
cutable file /books/pars/pep also contains documentation about the machine which can
be accessed by using the help commands in interactive mode (the -I switch). For example,
the “Com” command in interactive mode, lists and describes all machine commands.

4 History

19 aug 2022
Made a magical interpret() method in the perl translator which will allow running
of scripts.
Working on a simplified grammar for tr/translate.perl.pss which I hope to use
in all the translator scripts. So far so good. Also introducing a new expression
grammar for tests eg
(B"a",B"b").E"z" { ... }

This allows mixing AND and OR logic in tests. Also, a pep script that extracts all
unique tokens from a script would be useful.

17 aug 2022
Looking at ANTLR example grammars, for ideas of simple languages such as ”logo”,
”abnf”, ”bnf”, ”lambda”, ”tiny basic” Reforming grammars of the translators, writ-

1

https://sourceforge.net/projects/bumble/

ing good “unescape” and “escape” functions that actually walk and transform the
workspace string. Converting perl translator to a parse method Need an “esc”
command to change the escape char in all translators. The perl translator is
almost ready to be an interpreter.

13 august 2022
Debugged the tcl translator- appears to be working well except for second gener-
ation scripts.
current tasks: finish translators, perl/c++/rust/tcl start translators: lisp/haskel-
l/R (maybe) Write a new command “until” with no arguments.(done in some trans-
lators) Make the translators use a “run” or “parse” method, which can read and
write to a variety of sources. Make the tape in object/pep.c dynamically allo-
cated. See if begin { ++; } create space for a variable. And use this strategy for
variable scope.

28 july 2022
Starting to create date-lists in eg/mark.latex.pss to render lists such as this one.
Also, had the idea of a new test
F:file.txt:"int" { ... }

This would test if the file “file.txt” contain a line starting with “int” and ending
with “:” + workspace. This test would allow checking variable types and dec-
larations. It would also allow better natural language parsing, because a list of
nouns/adj/verbs etc could be stored in a simple text file and looked up. Also,
variable scope could be included in the file eg

int.global:x

int.fn:x

string.global:name

string.local:name

etc

Also, another test
F:name.txt: { ... }

Would check the file name.txt for a line which begins with the tape and ends with
the workspace.

21 july 2022
A lot of work on the javascript translator tr/translate.js.pss 1st gen tests are
working. Working on the rust translator and the eg/sed.tojava.pss translator.

13 july 2022
new ideas: create a lisp parser, create a brainf*** compiler (done) create a “com-
monmark” markdown translator. This should be not too hard, using the ideas
in eg/mark.latex.pss will create a ’date list’ format for mark.latex.pss and
mark.html.pss

7 july 2022
Started a lisp parser eg/lisp.pss Worked on eg/mark.latex.pss which is now
producing reasonable pdf output (from .tex via pdflatex). Also realised that the
accumulator could be used to simplify the grammar by counting words.

5 july 2022
Developed a sed to java script, “eg/sed.tojava.pss” which has progressed well.
Still lacking branching commands and some other gnu sed extensions.

2

30 june 2022
wrote a simple sed parser and formatter/explainer at eg/sed.parse.pss (com-
mands a,i,c not parsed yet).

24 june 2022
Some work on the javascript and perl translators.

18 june 2022
Introducing an ’increment’ method into the various machine classes in the target
languages. This allows the ’tape’ and ’marks’ arrays to grow if required.

17 june 2022
Looking at translation scripts. Changing tape and mark arrays to be dynamically
growable in various target languages.

14 sept 2021
reviewing documentation, tidying.

9 sept 2021
Working on the pl/0 scripts. eg/plzero.pss and eg/plzero.ruby.pss eg/plzero.pss

now checks and formats a valid pl/0 program.
4 sept 2021

Working on the palindrome scripts eg/pal.words.pss and eg/palindrome.pss .
Both are working well and can be translated to various languages (go, ruby, python,
c, java) I would like to add hyphen lists to mark.latex.pss and date lists (such as
this one)

28 aug 2021
Go translator now working well. I would like to write a translator for the Kotlin, R
(the statistical language), swift rust. The script function pep.tt (in helpers.pars.txt)
greatly helps debugging translation scripts.

20 aug 2021
More progress. A number of the translation scripts are now quite bug free and can
be tested with the helper function pep.tt <langname>This script also tests 2nd
generation script translation, which is very useful where the original pep engine is
not available (for example, on a server).

15 july 2021
Continuing work. Starting many translation scripts such as tr/translate.cpp.pss
and trying to debug and complete others.

14 july 2021
working on tr/translate.c.pss good progress. simple scripts translating and
compiling and running. Did not eliminate dependencies so that scripts need to be
compiled with libmachine.a in the object/ folder.

5 july 2021
working on the Ruby translator in tr/translate.ruby.pss Should try to make a
’brew’ package with ruby for pep.

17 june 2021
Some work on the Makefile. renamed gh.c to pep.c Made pep look for asm.pp in
the current folder or else in the folder pointed to by the “ASMPP” environment
variable. Need to add “upper” “lower” and “cap” to the translation scripts in
pars/tr/

15 june 2021
things done:

? implemented “nochars” “nolines” “upper” “lower” “cap” (capital case for
3

workspace) in machine.interp.c. nochars and nolines are already in a number
of translation scripts.

? clean up the pars folder (get rid of stray gh.c files etc).
? fixed the add “\\” bug which was cause by a bad implementation of until

in machine.interp.c (need to count preceding escape chars) Need to fix the
same in the translation scripts

Here are some immediate tasks to make the pep engine more complete.

? write a ”make configure” script to install pep somewhere
? fix up the website at www.peptool.org and include some docs there
? try to write an html translator for the commonmark spec and contact jgm -

the pandoc guy to try to generate some interest in pep.
? write some code on rosettacode site. (done) Send to linguists.
? write a go translator for a modern compiled script engine. (done)
? finish tcl translator

8 june 2021
Have made some more good progress over the last few days. Modified the script
/books/pars/eg/json.check.pss so that it recognises all json numbers.
Fixed /books/pars/tr/translate.py.pss so that it can translate scripts as well
as itself. Started to fix /books/pars/tr/translate.tcl.pss. Still have an infinite loop
when .restart is translated, and this is a general problem with the “run-once”
loop technique (for languages that dont have labelled loops or goto statements, for
implementing .reparse and .restart). The solution is a flag variable that gets set
by .restart before the parse>label (see translate.ruby.pss)
The script eg/mark.latex.pss is progressing well. It transforms a markdown-ish
format (like the current doc) into LATEX. Need to do lists/images/tables/dates

18 april 2021
Having another look at this system. I still see enormous potential for the system,
but dont know how to attract anyones attention! I updated the eg/json.check.pss
script to provide helpful error messages with line+character numbers. Also, that
script incorporates the scientific number format (crockford) in eg/json.number.pss.
However, Crockfords grammer for scientific numbers seems much stricter than what
is often allowed by json parsers such as the “jq” utility.
I became distracted by a bootable x86 forth stack-machine system I was coding at
/books/osdev/os.asm That was also interesting, and I had the idea of somehow
combining it with this. Hopefully these ideas will come to fruition.
I think the best idea would be to edit the /books/pars/pars-book.txt document,
generate a pdf, print it out, and send it to someone who might be interested. This
parsing/compiling system is revolutionary (I think), but nobody knows about it!!

15 december 2020
I have not done any work on this project since about august 2020 but the idea
remains interesting. Finishing the “translate.c.pss” script would be good (done:
sept 2021), make “translate.go.pss” for a more modern audience (done: sept
2021).

27 august 2020
Working on the script “translate.c.pss” to create c code from a pep script. I
may try to eliminate dependency files and include all the required structures and
functions in the script. That should facilitate converting the output to wide chars

4

www.peptool.org

”wchar”.
11 august 2020

Ideas: write a bash script to test each script translator (such as translate.tcl.pss
translate.java.pss) [done: the pep.tt function]
In the java translator, make the parse/compile script a method of the class, with
the input stream as a parameter. So that the same method can be used to parse/-
compile a string, a file, or stdin, among other things.
This technique can be used for any language but is easier with languages that
support data-structures/classes/objects.

7 august 2020
Continuing to work on the scripts translate.py.pss and translate.tcl.pss. Had the
idea to split the pars-book.txt into separate manpages just like the tcl system
”man 3tcl string” etc.

24 july 2020
Made great progress on the script “translate.java.pss” which could become a
template for a whole set of scripts for translating to other languages.

23 july 2020
continuing to work on translate.java.pss Still need to convert the push/pop
code and test and debug. Many methods have been in-lined and the Machine class
code is now in the script.

22 july 2020
Rethinking the translation scripts /books/pars/tr/translate.java.pss /books/pars/tr/translate.js.pss
These scripts can be greatly simplified. I will remove all trivial methods from the
Machine object and use the script to emit code instead. Hopefully translate.java.pss

will become a template for other similar scripts. Also, I will include the Machine
object within the script output so that there will be no dependency on external
code.

20 july 2020
Wrote the script /books/pars/eg/json.number.pss which parses and checks num-
bers in json scientific format (Eg -0.00012e+012) This script can be included in the
script eg/json.parse.pss to provide a reasonable complete json parser/checker.

3 july 2020
Working on the script /books/pars/eg/mark.html.pss The script is working rea-
sonably well for transforming the pars-book.txt file into html. It can be run
with:
pep -f eg/mark.html.pss pars-book.txt > pars-book.html

15 june 2020
Cleaning up the files in the /books/pars/ folder tree. Renaming the executable to
“pep” from ”pp”. I think “pep” will be the tools definitive name.

14 june 2020
I will rename the tool and executable to “pep” which would stand for ”parsing
engine for patterns”. I think it is a better name than “pp” and only seems to
conflict with ”python enhancement process” in the unix/linux world.
Wrote a substantial part of the script /books/pars/eg/json.parse.pss which can
parse and check the json file format. However, the parser is incomplete because at
the moment it only accepts integer numbers. Recursive object and array parsing is
working.
I will try to improve the mark.html.pss “markdown ” transform script. I would

5

still like to promote this parsing VM since I think it is a good and original idea.
23 august 2019

Did some work on mark.html.pss

20 august 2019
Cleaned up memory leaks (with valgrind). Also some one-off errors and invalid
read/writes. The double-free segmentation fault seems to be fixed. Still need to fix
a couple of memory bugs in interpret() (one is in the UNTIL command).

17 august 2019
Trying to clean up the pars-book.txt file which is the primary documentation file
for the project.
Posted on comp.compilers and comp.lang.c to see if anyone might find this useful
or interesting...

16 august 2019
The implementation at http://bumble.sourceforge.net/books/pars/object

has arrived at a usable beta stage (barring a segmentation fault when running big
scripts).

22 February 2015
(approximately)
Started the current implementation in the c language. I created a simple loop to
test each new command as it was added to the machine, and this proved a successful
strategy as it motivated me to keep going and debug as I went.

2009

Wrote an incomplete c version of this machine called ”chomski”.

2006 - 2014

Wrote incomplete versions in c++ and java. The java Machine object at /books/pars/object.java/
got to a useful stage and will be a useful target for a script, very similar to /books/pars/tr/translate.c.pss
(and will be called “translate.java.pss”). This script creates compilable java code
using the java Machine object. In fact, we will be able to run this script on itself (!). In
other words we can run:

pep -f tr/translate.java.pss tr/translate.java.pss

The output will be compilable java code that can compile any parse machine script into
compilable java code. Having this java system we are able to use unicode characters
in scripts.

It will be interesting to see how much slower the java version is.

2005

Started to think about a tape/stack parsing machine.

5 Roadmap

I am keen to try to publish this language and idea further, because I think that it has
great potential. Here is a list of things which I will try to do, to make the system more
credible.

6

http://bumble.sourceforge.net/books/pars/object

6 Tasks

? write a pep script that extracts all unique tokens from script.
? write script that transforms pep to BNF ignoring attributes.
? finish translation scripts for rust/haskell/c++ ...
? add an exit code to quit;
? make “w” take a filename argument
? escape should escape all chars in string eg ”escape ’${}’”
? fix the escape and unescape code in machine.c

? get a domain name such as peptool.org, (maybe peplang.org or pepnomlang.org or
nomlang.org) [done]

? add a list syntax to /books/pars/eg/mark.html.pss and mark.latex.pss

? Also a definition list syntax. So a paragraph with lines starting with ’o-’ or d/- u/-
[done]

? collect some artwork/screenshots/diagrams etc to go into the ’pars-book.txt’ docu-
mentation file.

? convert mark.html.pss into a version that generates LATEX, [done] (eg/mark.latex.pss)
? comprehensively edit and proof-read the ’parse-book.txt’ file
? using mark.latex.pss create a pdf version of the booklet.
? print and bind a limited edited of the booklet. Send it to people who may be

interested.
? work on all the translation scripts so that I can translate scripts into many other

languages (and so, support unicode) [aug 2022: java/go/ruby/python/c/tcl/js done.
perl/rust/ etc need to be debugged]

? solve the problem of attribute grammars, how do we do type checking and variable
definition validity checks? There are a number of possible solutions, include a string
’type’ stack which works just like the token stack (but with no accompanying tape
array). Another solution is just to use the “mark” and “here” commands to check
tape cells. But we need a test that checks if the tape is contained in the workspace
or vice-versa.

7 Bugs

There appears to be a problem in growProgram in program.c called by machine.c Throw-
ing a seg fault.

8 Compiling the code

In the object/ folder there is a Makefile which can be used to compile the c interpreter
code.

The file /books/pars/helpers.pars.sh contains bash functions to compile the c source
code. The most important bash functions are

peplib() which compiles the object c files into a static library /books/pars/object/libmachine.a

(for linking into executable compiled scripts)

ppco() compiles all c source files into the executable “pp”

ppcl() compiles standalone executable scripts generated by compilable.c.pss

7

ppjjff() compile or translate a script into java which can be run with the code in
object.java

9 Important files

/books/pars/object/*.c implementation of the machine and program c objects

/books/pars/object/pep.c implementation of the interactive script interpreter and de-
bugger This version uses only plain 8 bit characters (char). However this problem can
be overcome by using a translation script such as translate.java.pss into a language
which supports unicode.

/books/pars/compile.pss implementation (compiler) of the script language in the script
language itself. This was originally “bootstrapped” by ar.compile/asm.handcode.pp

/books/pars/asm.pp implementation of the script language in “assembler” format This
is now generated from from the compile.pss script by running

pep -f compile.pss compile.pss > asm.new.pp; cp asm.new.pp asm.pp

The original “bootstrap” script compiler can be seen at /books/pars/ar.compile/asm.handcode.pp

/books/pars/helpers.pars.sh various bash functions to run and compile the c code
and scripts.

/books/pars/tr/translate.java.pss a script which generates compilable java code
for any script (including itself). This script shows great potential but needs to be more
completely debugged (as of 25 july 2020)

/books/pars/eg/ some pep scripts which demonstrate uses of the language and virtual
machine.

/books/pars/eg/exp.tolisp.pss A script which converts arithmetic expressions into a
lisp-like format

/books/pars/eg/natural.language.pss a very simple and limited natural language
(english) recogniser.

/books/pars/eg/mark.html.pss Converts a ”mark-down”-like text document format
into html This is used to generate the file “pars-book.html”

/books/pars/eg/json.parse.pss A script that recognisers and checks a subset of the
json format (only integer numbers recognised until I integrate the script json.number.pss
into it. This can be translated to (for example) java and executed with

pep -f translate.java.pss eg/json.parse.pss > Machine.

⇒ java

javac Machine.java

echo "[1,2,[0,0],{’name ’:’bob ’, ’age ’:22}]" | java

⇒ Machine

Or it can be executed directly with

pep -f eg/json.parse.pss -i "[1,2,[0,0],{’name’:’bob’, ’age’:22}]"

8

10 Attribute grammars and pep

The problem of “attribute” grammars is an important one, and needs to be solved in
order to make pep a viable option for compiling computer languages. Let us say that
gender, or number are attributes of adjectives or nouns. Also, the type of a variable or
expression is an attribute of that expression.

These attributes need to “agree” when tokens are resolved/reduced: that is ”los mujeres”
is grammatically incorrect because “los” has a masculine attribute and “mujeres” has a
feminine attribute.

The solution may be a type stack with an item on the stack for each “scope” (procedure,
subprocedure etc). No, a fake stack can be made in a tape cell.

11 Changes that need to be made

Make the following commands:

’w "name.txt"; write the workspace to the file name

W "name.txt"; append the workspace to the file "name.txt"

W; append the workspace to the file name in the tape cell.

q 4; exit with code 4

Maybe organise better the c code: the struct Program could be removed as a member
of the struct Machine.

9

	``About ``pep'' or ``nom''
	Download
	Documentation
	History
	Roadmap
	Tasks
	Bugs
	Compiling the code
	Important files
	Attribute grammars and pep
	Changes that need to be made

