
/home/arjuna/sf/htdocs/books/osdev/os.asm Sun Mar 28 21:12:07 2021 1

 %if 0 ; docs{

 A BOOTABLE FORTH STYLE "OS"

 This file represents a bootable readonly forth-like system. It uses a
 byte-code approach to creating a simple forth dictionary. Its overall aim
 is to create a portable and minimal booting interactive system. All
 commands entered interactively (in the SHELL loop) are ’compiled’ into
 bytecode either into an anonymous code buffer or to the dictionary and then
 executed.

 Also, the general aim of the code is to get to a source interpreter
 and compiler in the minimum code size possible.

 This is by no means a standard forth! It is an experiment.

 MOTIVATION

 "our civilization will collapse under the weight of its own complexity"
 charles moore.

 "simplicity is more fertile than complexity"
 anon

 This code is an attempt to answer a question:
 "what is the smallest bootable, interactive, portable system
 that can add to itself from source code, in a structured,
 orderly and understandable way?"

 To elaborate...
 "Smallest"
 The aim of any developer should be to reduce the size and
 complexity of the core system (not increase it) while
 satisfying the conditions below. Currently (2018) about 7K core
 system.
 "Portable"
 from microcontroller to mainframe using a rigorous practical
 virtual machine and bytecodes.
 "interactive": actually this condition is not so important
 because a system that can add to itself from source code
 can easily compile and execute an interactive REPL interpreter
 or shell. But it is important that the user can choose what
 bits to add to the system, and what not to add.
 "Add to itself"
 via disk, serial connection, or tcp, using globally unique and
 locatable object names (words). So each word has a domain name
 which, when combined with the word itself, forms a globallly
 unique name.
 "from source code"
 This condition implies that a compiler must be present
 "Bootable" doesnt require any operating system on any architecture.
 "Structured"
 must add to itself in manageable, contained units of code
 that can be debugged individually.
 "Understandable"
 must strive to be simple enough for an average coder to
 understand after reading for a few days.

 Actually forth contains partial but powerful solutions to some of these
 criteria.

 The question above is important because it has implications for our
 consumption of resources, impact on the environment, beholden-ness
 to obsolescence and relationship with technology. In particular
 power consumption is related to software complexity. Simple software
 can run on small low-power consumption computers (such as a coin-cell
 powered bicycle computer).

 Another important aspect is digital security

 and the "knowability" of code. Opaque massive compiled code is
 inherently insecure because it is unknown and unknowable. At some
 point governments will need to acknowledge this, because the
 trojan horses they implant in various systems will be compromised
 by the trojan horses that others place in their systems. It is
 a futile arms race of insecurity.

 This question also has implications for how human beings interact with
 technology and whether they are in control of those interactions or are
 victims of them. The divide between "programmer" and "user" is artificial
 and serves commercial purposes not human ones. Just as the divide between
 operating system and software is also artificial.

 To expand a little, the code uses bytecode and a simple 2 stack virtual
 machine to hopefully allow portability between microcontrollers and
 modern laptops/desktops. By attempting to port to very disparate chip
 architectures (avr micros, x86, z80, arm), the designer is encouraged to
 think about what is essential for usability and what is just fluff. This
 may seem to contradict one of charles moore’s principles which is "dont
 code for what you may need in the future, dont try to generalise your
 code". But it is more an attempt to harness the power of the commonality
 of the internet and the power of virtual machines to cheat obsolescence.
 Tinyness and minimalism will hopefully not be sacrificed.

 The system tries to make the core as tiny as possible while not
 sacrificing "understandability". So the aim is to get to a source code
 compiler in the minimum amount of code. Forth ideas facilitate this.

 Another important idea is that of universal naming. All objects (in this
 case forth words) should have a resolvable, locatable, unambiguous
 universal name eg 4th.core.dup Since almost all code is source, then each
 object (forth word) consists of a minimal syntax (space delimited words)
 and a series of named-objects (other forth words). This has the simple
 but powerful consequence that, given the name of a word, all
 "dependencies" can can be located and obtained, and the given word can be
 compiled and run. This also applies to data structures.

 On top of this system we could code a parsing machine
 see bumble.sf.net/books/gh/gh.c (nearly but incomplete) which
 would allow the forth machine to recognise and assemble more
 expressive syntaxes for code and data structures.

 JOURNEY

 copying machine code or peeks and pokes into a vic20 (?)
 qbasic as a teenager. Nice help screens on an IBM XT?
 First had to learn x86 assembly which I had been meaning
 to do since the age of 12. Learn about
 x86 bios calls. Then had to think about forth for a number of years.
 First heard of forth from D. McBain. Then had to think about parsing and
 compiling etc. Coding php scripts, in Wagga Wagga NSW. html-form code
 editor in php, writing text converters in #!/usr/bin/sed and thinking
 about the sed "virtual machine" in Almetlla de Mar, Catalunya. learning
 [TCL] and its simple bracket syntax (almost as simple as forth).
 Learning a little Java in Bogota, but never achieving anything useful.
 Linux shell scripting and bash. c coding. Writing the pattern
 parser unsuccessfully in many languages. Some avr assembly.
 Markdown and code that produces code. Learning x86 assembly booting from
 MikeOs template.

 FEATURES

 Case sensitive, and all core words are lower case, but
 in documentation I may make them upper case so that it is
 obvious that I am referring to the forth WORD and not the
 English word.

 Unlike some forths, this version compiles commands entered
 interactively to an anonymous buffer. The advantage of this is that

/home/arjuna/sf/htdocs/books/osdev/os.asm Sun Mar 28 21:12:07 2021 2

 flow control words like if, fi, else, begin, until... can be
 used interactively, not just in colon : definitions.

 Bytecode. Not a standard forth: eg, THEN is FI
 "execute" is "pcall" to match with "fcall" opcode

 Even "proceedures" (everything after the no-op procedure) are
 written in pseudo forth. That means that they are just a series
 of calls - to opcodes and other proceedures. The idea
 is to make porting to another architecture simpler.

 DIFFERENCES FROM (94?) STANDARD FORTH

 I have attempted to keep the idea of a "compiling" forth.
 This means that there is really no such thing as "interpreting"
 in this forth. The only interpreting opcode is PCALL and I
 may remove it. My motivation for this is to stick as closely to
 the operation of real machines. Chips general can only execute
 machine code that exists at some location in memory. I want to
 adhere to this principle to make the idea of a "virtual machine"
 more coherent.

 * All defining words will probably have to be immediate.
 * All standard words are lower case.

 postpone is post
 RECURSE is just the name of the word. For example
 : gcd (a b -- gcd) ?dup if tuck mod gcd fi ;
 just works and finds the greatest common divisor.
 This may have the implication that two words cannot have
 the same name (which is also required by unique naming
 ideas and namespaces)
 IF/THEN is IF/FI
 because I find THEN just too different to every other
 computer language ever invented.
 EXECUTE is PCALL
 WORD is WPARSE
 because the word word is used for way too many things in
 Forth. eg function in dictionary, 2 bytes of data, space delimited
 text ...Also wparse works for various whitespace
 characters (tab, newline, space) not just the space
 (asci 32) character.
 VARIABLE is VAR
 because I dont need to type any more than I already do.
 IMMEDIATE is IMM
 COMPILE, is ITEM,
 and works slightly differently from COMPILE, (it takes a flag
 that indicates if the argument is an opcode, literal or procedure)
 But that may change.
 I is ii
 J is jj
 CHAR
 is an immediate word. To use CHAR
 in a colon definition, do "char * literal" or just use [char]
 accept does not take a character limit, yet.
 COMPARE is (a A n -- flag) rather than (a n A N -- a’)
 so this compare assumes that the 2 strings are of equal
 length.

 STATUS

 The system is edging towards a usable forth-style system. It
 can read and write to usb from an x86 system in real mode, but
 there is no easy way to edit buffers yet (apart from ’accept’)
 so is probably not usable as a standalone system yet.

 PROBLEMS

 defining words do not update the dictionary code pointer

 but ’does>’ does, so we can use does at the end of
 a defining word to make sure the code pointer is updated

 PERFORMANCE

 A virtual machine is normally considered to run slower than
 native machine code, but some optimisation techiques are
 possible. We can replace x86 ’calls’ to opcodes with jumps
 and we can keep the top of the stack in ax. Also it should not
 be too difficult to compile bytecode to native machine code, if
 necessary.

 * 16 june 2018 performance testing:

 With exec.x using calls to opcodes and pop/push return pointer
 in the opcodes, performance is as follows using the word
 ’timeloop’ to measure looping speed

 With qemu on asus e402m machine
 500 000 loops took 495 milliseconds
 1000 000 loops took 935 milliseconds
 Booting from usb
 1 million loops took 110 ms
 2 million loops took 220 ms
 10 million loops took 1100 ms
 So as expected, much faster on the actually machine rather
 than in qemu. But is this fast enough to play chess?

 * 17 june 2018
 On Ibm thinkpad r52, using exec/call version, real mode
 using word ’timeloop’. booting from usb. Strangely this seems
 twice as fast as when I converted to using jmps and having
 top of stack held in dx.

 1 million loops took 55 milliseconds
 10 million loops took 275 ms
 40 million loops took 1155 ms

 So surprisingly the old r52 thinkpad was 4 times faster than
 the more modern asus machine in real mode.

 * 18 june 2018

 system converted from call/ret (in exec.x) to jmp ...
 With qemu on asus e402m machine. Using word ’timeloop’
 500 000 loops took 275 milliseconds
 1000 000 loops took 605 milliseconds
 So by converting from call/ret to jmp there is about a 30%
 improvement in qemu.

 On asus eeepc (seashell), using jmp in exec/opcode, real mode
 booting from usb.
 1 million loops took 55 milliseconds
 10 million loops took 605 ms
 16 million loops took 1045 ms

 asus e402m machine Booting from usb, jmp (not call/ret)
 10 million loops took 990 ms
 So not much improvement on modern machine. Perhaps
 modern chips do realmode very badly.

 With qemu on asus e402m machine, jmps and top of stack in DX
 real mode.
 1 million loops took 385 milliseconds
 2 million loops took 825 milliseconds
 So there seems to be a significant improvement with top of stack
 in DX.

 VIRTUAL MACHINE AND OPCODES

/home/arjuna/sf/htdocs/books/osdev/os.asm Sun Mar 28 21:12:07 2021 3

 This forth system tries to emphasize portability, knowability
 and interoperability. The idea is that each opcode should be
 standard and have a defined semantic operation on the machine.
 Also, periferals are considered part of the machine. But
 periferals (sensors, actuator, transducers etc) are myriad
 and pluggable and unpluggable. So how do we handle this
 situation: The answer is that the set of available opcodes
 defines the machine- actually forms the machines "signature".
 Since possible periferals and devices attached to the core
 2-stack machine are infinite, we need at least 2 bytes to
 describe them. Or a utf8 type of variable length encoding.

 So: "1234567" may be the opcode to read a 3 axis accelerometer.
 The number 1234567 must be unique, universal and defined in
 some public document.
 But in the actual machine this opcode will be probably mapped to
 a much smaller number (say 66) so that it can be encoded in one
 byte or less (depending on how many periferals/sensors the actual
 machine has). So the signature of the stack machine includes
 all standard opcodes expressed as a list of ranges 1-4, 7-9, 11, 13
 etc as well as any mappings eg 1-4,7,9,66:1234567

 Also there are further subtleties here, which need attention.
 Eg: Absent opcodes can be "emulated" or in some cases just
 keyed to NOP. For example an opcode which moves a robotic
 arm could be emulated as a video monitor display of the robotic
 arm moving.

 An opcode which sets the text colour for a monitor may not be essential
 for the operation of the software and may just be keyed to NOP.

 It would be nice to be able to create missing opcodes using
 "high level" forth (source code) as well as assembler appropriate
 to the current chip architecture.

 Some opcodes, even if absent, can always be constructed from
 core stack machine operations. For example double precision
 arithmetic (eg D+ D-) can be constructed from 16 bit forth
 opcodes (+ - dup swap etc). But if speed and efficiency is
 important for the given application, then these operations
 should be coded as opcodes written in assembler.

 The general aim is for the structure of the target machine
 to be knowable and analysable from within code.

 STRUCTURE OF THE DICTIONARY

 One of the key ideas of a forth-like system is the use of a
 linked list with each item in the list being a data structure
 with the name and code for a particular function. This linked list
 is called the dictionary. The current code uses the following
 structure for the dictionary:

 [link to previous word] 2 bytes
 [name of word]
 [count of name] 1 byte || IMMEDIATE FLAG
 [code]
 [data or "parameters"]
 ... next word structure

 This uses "reverse" name counts. So the byte containing the
 length of the name is after the name, not before as in the majority
 of forths. This allows us to decompile
 byte code by getting a list of pointers to code and
 then looking up the name. But it may have other unknown disadvantages.
 eg
 db ’minus’, 5
 dw exec ; link to previous

 Another refinement is to hold the top element of the
 stack in ax, which simplifies a lot of stack manipulation.
 eg 1+ becomes "inc ax" etc.

 OBJECT ORIENTATION

 The code below may contain a hint as to how to emulated object
 orientation with forth. Each of the function pointers
 could be like a method on an object.

 create buttons ’ ring , ’ open , ’ laugh , ’ cry ,
 : button (nth --) 0 max 3 min
 cells buttons + @ execute ;

 IDIOMS

 This section contains recipes for doing simple or common programming
 tasks with this forth

 * use a counter to print something once every 8 loops

 var nn
 : ++ dup @ 1+ swap ! ;

 : something
 ; initialise counter to 0
 0 nn !
 begin
 ; print 8 words to a line
 nn ++ nn 8 mod 0 = if cr fi
 again ;
 ,,,

 CULTURE

 Forth has its own culture. It uses a set of words and concepts
 which are completely different from the main stream coding
 world. It has a set of naming conventions which are not related
 to normal coding naming conventions.

 These days forth is a forgotten backwater with little or no mainstream
 relevance apart from embedded systems, but its ideas remain powerful.

 NAMING

 Since Forth words can contain any punctuation, these little
 characters are (over?) used extensively to try to convey the
 meaning and purpose of words. Below are some notes about
 traditional ways that this has been done

 TOS top of stack, displayed as rightmost element.
 NOS next element on stack.

 / divide by something eg 2/ divide by 2
 / word divider eg: r/w "read/write" s/o "search order"
 / search for something (convention from unix)
 eg ss/ search for words in source code blocks

 . display something (print to screen and remove from stack)
 , compile something (store executable code or data in memory)
 : define a new word or data buffer
 @ fetch something from memory (and push to data stack)
 ! store something in memory.
 ’ get the execution address of something.
 ’ modify something (in stack comments) eg x’ "x modified"
 c character operation eg: c@ fetch one character (8 bits)

/home/arjuna/sf/htdocs/books/osdev/os.asm Sun Mar 28 21:12:07 2021 4

 (something) is the runtime behaviour of "something"
 [something] is an immediate version of the word "something"

 That means that it executes "immediately" or at compile-time.
 XT means "execution token" which is just the address of
 code that can be run by the virtual machine. (either byte code
 or machine-code).

 INSPIRATION

 The code was original inspired by the helpful and simple instructions
 from MikeOS on how to get a minimal booting x86 "operating system"
 working. The code was also inspired by the incredible simplicity
 of forth-like systems, and also, the ease of implementing a bytecode
 system using indirect jumps.

 In general, simplicity appears to be much more fertile than
 complexity. Linus Torvalds was inspired by the simplicity of
 Tannenbaum’s minix system to start the Linux journey. Tannenbaum
 may have been inspired by the simplicity of early unix systems.

 Donald Knuths "literate programming" where the source code
 includes the documentation and also self-documents. The idea
 is that the source code is a document which describes itself,
 both at compile-time and at run-time

 IMMEDIATE WORDS

 One of the main semantic problems of forth systems is the idea of
 immediate vs non-immediate words and "run-time" versus "compile-time".
 Immediate words execute at compile-time and non-immediate words execute
 at run-time. These ideas occur because forth is a compiling system.

 eg char "
 puts the character " (integer 34) on the stack at run-time
 but [char] " or [char] "
 does the same thing at compile time, no not correct...

 FORTH BOOKS

 "An invitation to forth" ...
 "Threaded Interpretive Languages" by RG Loeliger
 Apparently some info on how to build a forth system.
 "A Complete Forth" (1983)
 A good general overview of early forth
 "Thinking Forth": Brodie
 An introduction to forth. Available free online.
 "Forth Programming Handbook" 3rd Edition, Conklin, Rather (2007)
 A good reference and explainer for the 1994 standard
 language. Also reasonable recent.
 "Forth: The next step" by Ron Geere
 This is a simple and useful book which defines some handy
 new words in forth (such as squareroot etc).
 "Forth Application", S.D.Roberts
 Strange and unreadable, at least to me. But no doubt with
 some good ideas.
 Scientific Forth: Julian V. Noble
 A vey well regarded forth book but out of print.
 Finite State Machines in Forth, an article by J.V.Noble
 http://galileo.phys.virginia.edu/classes/551.jvn.fall01/fsm.html
 Good articles by Noble
 http://galileo.phys.virginia.edu/classes/551.jvn.fall01/primer.htm
 http://galileo.phys.virginia.edu/classes/551.jvn.fall01/primer.htm
 Realtime forth

 PEOPLE
 Anton Ertl
 Mitch Bradley

 FORTH SYSTEMS

 This is a cursory overview of various active and historical forth
 systems.

 Dr dobbs: the commando forth compiler
 GFOS
 A booting forth system for x86, some sound and image support. HDE ide
 https://el-tramo.be/blog/waforth
 spf.sf.net
 Figforth, forth 79 standard, forth 94 standard
 LMI-Forth
 for the IBM pc
 MVP-Forth
 not sure where it ran
 Open Firmware (Mitch Bradley)
 Still used at OLPC for
 booting laptops. A major project.
 cforth
 based on mitch bradley olpc forth
 gforth
 a big complete forth written in c. (non-booting)
 amforth
 for avr chips
 flashforth
 for microcontrollers, eg avr (arduino) using flash memory.
 Runs on Harvard architecture microcontrollers and uses
 a "memory map" technique to separate data memory from
 program memory.

 Multos - stack based vm os
 Colour vision systems, bacchus marsh, victoria, au
 Keycorp, chatswood, KYC www.keycorp.net
 www.forthos.org
 http://www.vsta.org/contact/andy.html
 A bootable x86 forth in protected mode with oo extension
 Example of forthos oo syntax
 Set -> new constant mySet
 1 mySet -> add 123 mySet -> add

 * Add a method to a class
 Set -> :method addRange (high low self --)
 -rot do i over -> add loop drop method;

 DONE TASKS

 mar 2019
 * ".rs" to display the return stack, using "rpick" opcode
 * wrote de, as source
 * made ss/ page output
 * made all flow control words use long jumps. Preserved
 short jump words as If/Until/Again etc.. capital case.
 * made last use current
 * wrote a very simple stack underflow check
 in assembly code within "exec". the check is bypassable on
 compilation (for speed of execution).
 * wrote a return stack underflow check.
 * wrote very basic abort word that clears stacks and restarts "shell"
 * made namespaces using interleaved linked lists (wordlists)
 but still need to get "defs" to work, and start off a new list
 * wrote "word." as source code.
 * dont stop de, when an unknown opcode is encountered.
 * made ls print words from all lists in s/o, and
 print the name of the wordlist before each group
 of words
 * made a basic accept.span which takes a character limit
 * speed up find.so for searching all wordlists in searchorder
 * made "missing" do an abort.

/home/arjuna/sf/htdocs/books/osdev/os.asm Sun Mar 28 21:12:07 2021 5

 TASKS

 * rewrite "does>" and "(does>)" as source code. This may
 help to think about what they do, as well.
 * dont add duplicate wordlists to the search order.
 * make "accept" take a character limit.
 This will change the code for all
 "accept" variants.
 * only load the minimum number of blocks before "shell"
 * fix the splash screen reporting of bytecode words (too many)
 * make "anon" like "pad", a transient buffer just after
 the last word in the dictionary. By using a "defining" state
 know when to erase/overwrite the anon buffer, and when
 to execute it. "create" sets state=def, but what sets it
 back state=anon (anonymous compilation). Can we get rid
 of "immediate" state all together?

 * write .code as source (used by de,)
 * write "sliteral" as source code (scompile is used by "create
 so probably cant be written as source code).
 * preserve the old short jump "if" as the word "If"
 to use for compressed code.
 * maybe (clean) and (check) can be combined into one
 function, if limit is reached then drop rstack params
 See commented code way below in (loop). Yes, but
 "next" will still use the (clean) code but not the
 (check) code.
 * fix "ls" so that word and line count is cumulative
 for all word lists. If a wordlist is empty, then print
 "<empty>" etc.
 * decompile compiled strings in words.
 * make word. use the size of the word when decompiling,
 or else just stop when the next xt is reached (check
 with xt- or xt+).
 * make "ops" and xt>op scan through the opcode table
 * improve the history buffer handling for "accept.history".
 If a duplicate command is added to the history buffer, remove
 the old instance and add the new instance.
 * Add some kind of a time stamp for the history buffer
 * make a command to write the history buffer to disk
 or else just store the buffer in on disk, and access it
 with "buffer" etc.
 * make a way of stepping through code (ambitious).
 * try to show the state of x86 registers as code is
 executing, eg es:di (return stack pointer), ss:sp
 (data stack pointer), dx top of stack, etc.

 * comment out the data stack underflow check and time
 the speed difference for some hard task.
 * rewrite "all" to load all blocks until first block with
 no data.
 * write "reload" which deletes all words from the dictionary
 back to "last"? or back to "thru"
 and then loads all blocks sequencially until first empty block
 * opcode to clear data stack, another to clear return stack ?
 * improve .rscall to display the return stack with named fcalls
 using Un, etc. The complication are "pcalls"

 * dont! create a new "state"==defining which is set to true by
 create.
 * work out how to rewrite <# # #> for double precision numbers.
 * write a word like umd/mod (unsigned mixed double mod division)
 which standard # seems to need
 ie umd/mod (ud u -- ud u / remainder and quotient for /mod *)
 * make nfind look in all the word lists in the s/o
 search order buffer.
 * Write a word in bytecode that searches
 dict from particular xt, then make nfind use that word
 * make Ls print all words in all wordlists, even vocabs

 that are not in the search order.
 * make "missing" or miss.new print the current search order
 stacks. Eventually make "missing" look up words on
 a www index
 * make a word "where" which will search all vocabs
 for a word.
 * make "words" list all words in the first vocab in s/o
 that is "context".
 * make Vocabs and Forth the 2 minimum wordlists in the
 search order. So "only" will reset the s/o buffer to
 these two lists.
 * use EOL instead of 13/10 numbers etc. This is more portable

 * write in’ (A --) which shows the name of the
 word containing address A.
 just walk the dictionary(ies) and when xt < A then stop.
 This is complicated by interleaved dictionaries.

 * asci animals. using "line, lineto" etc
 * fix create bug for defining words maybe by: writing (create) and create
 as an immediate word, and adding code to semicolon to see if
 def bit is set and compiling semicolon code there.
 So we check the def bit and either do FCALL (;) or LIT, FCALL
 C, LITW, (;), , etc depending on whether def is set. Bug has
 been fixed for does> and (does>)
 * allow simple editing of blocks to test writing blocks
 * change ’decomp’ so that it displays the address as well
 as the name of the fcall functions.
 * use wsize in see see, etc to decompile whole word.
 * write DEPS (xt --) create a list of xts which are
 dependencies of word represented by xt.
 * write a ’dependency’ compiler. Find a word on disk,
 start compiling it, leaving a start marker. recurse down
 * a "search bit" in the name count field (next to the
 immediate bit, perhaps. This makes the word invisible
 in the dictionary)... not sure if necessary.
 * make READ do a number of attempts to read disk blocks (1K)
 * rewrite some words as "source" now that the : compiler
 more or less works.
 * find out what words are really necessary for the : word
 * it would be good to be able to add new "opcodes" dynamically
 to allow for the situation where new hardware becomes or is
 available. For example, if a gyroscope is available, then
 extended opcodes should read data from it. Yes the machine
 should be able to build apon itself/ add new opcodes to itself.
 * make a "document" dictionary, or shadow comments to other diskblocks
 * "dictionary full" check, ie. is there any more memory in which
 to place new words? ’unused’ word or ’free’
 * implement buffer. Buffer writes to disk and frees
 a buffer and block reads from disk. block calls buffer
 * all defining words need to be immediate, so ’does>’ could
 just do that automatically.

 GOTCHAS

 * If you have multiple byte codes on a jump line like this:
 db FETCH, JUMPNZ, .notempty-$
 then the target address .notempty-$ will not be correct

 * There is no way to list all wordlists, unless we maintain
 a list of wordlists and add to it every time a vocab is created.

 * In old forths u* and u/ leave a double precision result.
 so u/ is "um/mod" and u* is "um*" I think. So that code needs
 to be translated.

 * If one of the word counts in bytecode is wrong you get an
 error: "emit ?? @last "

/home/arjuna/sf/htdocs/books/osdev/os.asm Sun Mar 28 21:12:07 2021 6

 SOLVED BUGS

 mar 2019
 * "pad char z" interactively actually puts asci code for ’z’ on the stack
 before pad! This is because "char z" is getting executed immediately
 and "pad" isnt. A practical solution is to just do
 "pad [char] z" interactively, which works because all those
 words get compiled (to "anon") anyway.

 * do/loop does not have the +/-128 byte limit anymore
 * removed 128 jump limit from all flow control words,
 I think, and put them in source.

 * feb 2019: u. stopped working because I changed /mod to be
 a signed division. Change u. to use u/mod instead

 * mod /mod and / did not work for negative numbers !!!
 Needed to use a signed division instruction in x86
 * a bug in bytecode Forth vocab, where .notempty-$
 is 1 byte too many. Because db fetch, jumpnz, <target> on
 one line alters the target calculation !!
 * using find.so to search all wordlists really slowed down
 searching and compilation... This was because wfind was
 too slow. I recoded using the same code as "ffind" and
 it sped up again.

 BUGS

 * bracket comments dont seem to work interactively (eg this)
 * accept.arrow has a similar bug to accept.hist
 * accept.hist does not allow entering long commands
 interactively. It corrupts the dictionary after >in so
 it is overflowing the "term" buffer. accept.zero seems
 ok.

 * the following corrupts the dict when entered interactively
 : xx begin key? if ekey u. space u. fi again ;
 the error is: " : missing @<name> "
 the dictionary is corrupted before the word ">in" (doesnt
 list with "ls")

 * If I make searchorder 2, forth.d, vlist.d
 Then "order" doesnt work properly but if its the other
 way round then it is ok.

 * 2 "also" words crash the system, but one is ok!
 also Asm
 also Edit
 If we put these in different blocks, its also ok...

 * "word." doesnt work well for last word in the dictionary
 (tries to decompile code from the name, not from xt). But
 seems to work for all other words.
 * buff count ’ codepage wfind
 returns 0 because ’ is immediate and executes before
 "buff count". (buff needs to contain the name of a word).
 One solution is to make ’ the same as [’], which creates
 an litw opcode.

 * I can do 49 load in the repl but not in "thru" or in
 block 33. This is odd.
 * "wsize" on the last word in the dictionary returns
 a very very big number.
 * ." " and s" " cause a meltdown because the leading space
 is skipped with in++ then parse ignores the next " and
 tried to find the next " with not good results. A solution
 is to make parse stop if the first char is ". This may be
 standard "parse" behaviour.

 * in the snippet below the defined words .green etc
 have to be in immediate brackets.
 : colour create c, does> @ fg ; imm
 [2 colour .green 10 .lgreen 4 colour .red 6 .brown
 13 .pink 14 .yellow]

 * "clear" seems to underflow the stack to 4098
 * The following doesnt work because 128 is converted
 into a signed integer. It actually subtracts 128 from dp @ !!!

 db FCALL
 dw dp.p
 db FETCH, LIT, 128, PLUS

 * I think having a signed c@ etc is a bug. We need
 an extend sign opcode for relative byte jumps
 but not automatic signing of c@

 * Bug!
 The phrase "10 10 pad pad 4 + showbuffer" is causing a strange bug...
 But the word "..sb" works ok! So interactively showbuffer doesnt
 work but it does within another word. An unusual bug, and its
 too late tonight to work it out...

 * The old dp here problem arises with the def below
 : Defer create reset [op:] exit 0 , 0 c, ; imm
 If we do "defer t1 defer t2" then t2 is compiled
 right after the count field of t1 ! I dont think the
 "does>" trick will work here.
 But adding a "code>here" cludge does work. Eg
 : Defer create reset [op:] exit 0 , 0 c, code>here ; imm
 The problem can be seen by using the first "Defer" (with
 no "code>here") and inspecting dp
 For example: Defer t1 dp @

 * The following definition is causing a spectacular meltdown.
 The "3 allot" is causing the problem, but I dont know why.
 : Defer create [op:] exit 3 allot ; imm

 * nop should be "noop" to be more standardish

 * circle and fcircle have a zero bug at the moment.

 * "deci 256 hex U." prints 256. This is because the interpreter
 converts the string 256 to a number at compile time which is
 before "hex" has executed... Then a litw is compiled but
 it is not affected by hex. So we could make hex immediate?
 Or have a "state smart" hex?

 * doing "post >r .s" in the interactive interpreter
 crashes the system.

 * semicolons with no preceding : def will crash the system. Eg
 nop ;

 * The code below causes problems. It executes correctly,
 header is created and the data "abc" is written to
 the dictionary, but the ">code" variable
 is not updated properly

 [create test char a c, char b c, char c c,]

 We can fix the problem with:

 [create how char a c, char b c, char z c, code>here]
 or with
 [create how char a c, char b c, char z c, sync]
 But or some reason, if I put sync, or code>here in c, then

/home/arjuna/sf/htdocs/books/osdev/os.asm Sun Mar 28 21:12:07 2021 7

 the system crashes.

 * need to do
 [create table 1 , 2 , 3 , 4 ,]
 in the interactive interpreter to make a list of values

 * If you write -1 instead of 1- there will be no error
 but the word will not do what you want. 1- is an opcode
 the decrements the top stack item. -1 pushes -1 onto
 the stack. This is an easy mistake to make.

 * doing do/loop in the interpreter is crashing with
 showglyph and "ms" etc. but seems to work in source code

 * running on asus e402M the cursor flashes even when
 I try to hide it. Need to set bit 5 ? Also, green cursor
 leaving green lines on screen.

 * watch for any defining word that is not immediate! eg
 var, con, 2con etc.

 * watch for nested comments ((...)) !

 * see the xyset: code to see how to create a data array
 in this dodgy and buggy forth (need a superfluous "does>")

 * to define a new word in a source block, eg "xyset: test"
 we have to put that phrase after all other definitions in
 the block, otherwise it causes and error. This comes back
 to the old dictionary/anon switch bug.

 * [create data 0 , 1 , 2 ,]
 this works in the interactive interpreter but not in a source
 block. In source we have to do
 : data [0 , 1 , 2 ,] ;
 which is odd. Also, in standard forth you dont need [...] around
 the words.

 * When a defining word uses create but is not immediate then
 it crashes the whole system, which seems a little overly dramatic.

 * "see" doesnt display defined words very well. This is because
 see cant, at the moment, display data fields (strings etc) within
 words.

 * how to return the parameter (data field) for a defined word?

 * c@ and c@+ convert bytes to signed words, but do
 we really need signed bytes?

 * ss/ only prints one match per block

 * Extra semi-colons give strange errors, like ": ?? within"
 even though the extra semi-colon was well before the
 "within" word.

 * the "ss/" is missing some searches because it seems
 to add a space at the end of the search word.

 * "thru" or one of its words is eating 1 stack item.

 * when running on x86, not qemu, some video modes dont
 clear text on the screen after backspace space characters
 are emitted.

 * "ii" doesnt work within a loop if there is anything
 extra on the return stack (put there with ">r" for example
 within the loop). This may just be a feature of forth
 since there is no way for ii to know what is on the

 return stack

 * ./ not working interactively well. That is
 : ./ 10 parse drop drop ; imm
 : ./ 10 parse type ; imm
 truncates one character.

 This is because the input buffer has no newline ending (just a counted
 string). And when "parse" doesnt find a character it is truncating one
 character. One work-around is to put an extra space at the end of the
 line.

 Changed the behaviour of parse so that it returns the rest of the input
 stream when it doesnt find the character.

 see mike gonta: "all you wanted to know about usb booting but
 were afraid to ask" for important disk geometry info, fat12 info
 and read/write usb memory. complete source example

 MEMORY MAP

 The way that the code and data is laid out in memory is
 important. The bootloading segment (512 bytes) loads more
 code into memory (a few K) and then jumps to the entry point.
 When the code dictionary grows (by the use of new colon :
 definitions) the new dictionary entries should be placed in
 memory after the end of the dictionary.

 CHALLENGES

 How to write new code words back to disk? We can either write
 compiled code to disk as part of the dictionary, or just write
 source code to disk in forth-style "blocks". This is potentially
 dangerous, if we accidentally write to the computer hard disk
 we may corrupt the file system or even the operating system!

 Some kind of fat12 file system would be convenient, so that
 I could edit source code on some other operating system. Or at least
 copy it.

 Harvard architecture is not going to be easy.

 HOW TO BUILD AND RUN THIS CODE

 We can either run the code in a virtual machine like qemu
 or else actually write it to a usb or cd and boot it!
 The simulator is good for testing, but the usb or cd boot
 shows you how it works on real hardware!

 tools:
 nasm, qemu, dd, bash shell (or any other shell for compiling etc)
 linux (makes things easier), sed, date, vim,
 asciidoctor, enscript - for formatting and printing source code

 * create a printable pdf of the code in 2 columns landscape format
 enscript -o - -2r -f Courier7 os.asm | ps2pdf - os.pdf

 * compile with nasm into a bootable executable
 nasm -fbin -o os.bin os.asm;
 * make a 1.4Meg floppy image and insert the executable into it.
 sudo rm os.flp; sudo mkdosfs -C os.flp 1440;
 sudo dd status=noxfer conv=notrunc if=os.bin of=os.flp’
 * run the executable floppy image with qemu simulator (VM)
 sudo qemu-system-i386 -fda os.flp’

 To "burn" to usb or cd try:
 * use dmesg to see what your usb flash drive is called
 * unmount the usb flash drive
 umount /dev/sdc

/home/arjuna/sf/htdocs/books/osdev/os.asm Sun Mar 28 21:12:07 2021 8

 * write the bootable floppy image to flash drive: WARNING!
 sudo dd if=os.flp of=/dev/sdc
 !! The code above deletes all other files on the memory stick
 Be very very careful that you dont do this to your hard-disk
 or you will end up with an unbootable computer. !!

 The light should flash on the usb stick indicating that data
 is being written. Then just reboot the computer and choose the
 boot device. I think I had to "enable csm" or "choose floppy" mode
 in my bios to get the usb stick to boot.

 Some bash aliases for compiling and running the code.

 # make qemu open maximised but not full screen
 alias os=’sudo qemu-system-i386 -fda os.flp & sleep 1; wmctrl -r QEMU -b add,m
aximized_vert,maximized_horz’

 Below is a bash function which includes preprocessing of forth
 source code in %if 0; %endif; blocks. The preprocessing code is in
 os.sed. This is convenient because
 NASM doesnt seem to have any kind of multiline DB or DW syntax
 which means for defining forth source code in a nasm file we have to
 put "db ’ " around every line. The sed line deletes the marker lines
 (lines ending in "code{" and "}code")
 as well as comment and empty lines and put the "db ’" syntax
 around each line of text.

 # run the forth os
 os() {
 if [-z "$1"]; then
 name="os"
 else
 name=$1;
 fi
 echo " running ${name}.flp "
 # get rid of other qemu windows for clarity
 sudo pkill qemu
 sudo qemu-system-i386 -fda ${name}.flp & sleep 1;
 wmctrl -r QEMU -b add,maximized_vert,maximized_horz
 }
 # compile the forth style byte code system with some sed preprocessing
 # of the nasm file (to allow multiline text source code)
 ccos() {
 if [-z "$1"]; then
 name="os"
 else
 name=$1;
 fi

 echo "now compiling ${name}.asm "
 echo $(date +%d%b%Y-%I%P)
 sed -f os.sed ${name}.asm > ${name}.pre.asm
 # The line below adds the time and date to the machine name
 sed -i "/\.sig-machine\.name/s/’ *$/.$(date +%d%b%Y-%I%P)’/" ${name}.pre.as
m
 nasm -fbin -o ${name}.bin ${name}.pre.asm;
 sudo rm ${name}.flp;
 sudo mkdosfs -C ${name}.flp 1440;
 sudo dd status=noxfer conv=notrunc if=${name}.bin of=${name}.flp
 }
 cos() {
 cat os.asm | sed -f os.sed > os.pre.asm
 nasm -fbin -o os.bin os.pre.asm;
 sudo rm os.flp;
 sudo mkdosfs -C os.flp 1440;
 sudo dd status=noxfer conv=notrunc if=os.bin of=os.flp
 }
 # compile and run the forth system.
 alias oss="cos;os"

 * The sed script used to preprocess the nasm source file

 #!/bin/sed
 /code{ *$/,/}code *$/ {
 # ignore lines starting with "times" in code blocks
 # ’t’ jumps to end of script.
 s/^ *times/times/;t;
 /^ *$/d;
 /^ *;/d;
 /code{/d;
 /}code/d;
 # need to ’escape’ double quotes
 s/"/",’"’,"/g;
 s/^ */db " /;
 # put newline on the end of each line
 #s/ *$/ "/
 #dos line endings
 #s/ *$/ ",13,10/
 # unix new lines are better
 s/ *$/ ",10/
 }

 HISTORY

 27 march 2021
 working on the : ed block editor. screen scrolling
 etc.

 19 march 2021

 reexamining this after some years, some things are apparent:
 using ’here’ to switch between the dictionary and anon buffer
 is a bad idea. A 16 bit forth is limiting, 32 is better. Eg
 trying to find the distance between two points on screen might involve
 doing 300 dup * which will overflow a 16 bit forth.
 Also: it is hard to avoid cryptic stack juggling for some words.
 Sometimes factoring doesnt help. But there is a lot of good and
 interesting code here.

 4 april 2019
 Improved the block editor "ed". It can navigate with the
 arrow keys, pageup pagedown etc.

 Made a basic character insert. Made cr/nl insert work (change 13 to
 10), also delete and backspace. Made insert stop when buffer full. I
 can add a "mode" variable like vim, and display information when in
 command mode (like editor state). The command mode will only affect
 the "normal" keys, not special keys.

 3 april 2019

 Added some functions to the block editor, such as pagedown
 pageup. linedown/lineup. Some debugging.

 1 april 2019

 Some work on : ed the new block editor.

 29 mar 2019

 moving towards a more traditional style of forth programming
 which is much more highly "factored" than other languages.
 So words are short. This seems to increase readability
 if one doesnt use local variables.

 28 mar 2019

 Will rewrite a factored block editor.

/home/arjuna/sf/htdocs/books/osdev/os.asm Sun Mar 28 21:12:07 2021 9

 Slightly improved "asc" by printing asci values every
 8 characters. Made a singlebox and doublebox word, to use
 the "box" word.

 Wrote what I think is a more readable version of the ascibox
 word. Factored out top/sides/bottom.

 rethinking "ed". A block editor does not need to have
 a count byte/word.

 24 mar 2019

 starting to write "mtype" and "ed" to edit and display
 multiline text.

 21 mar 2019

 Wrote boxtype and .b" which prints a line of text in an
 asci box. Near the bottom of the screen the bottom of the
 box is not printed properly.

 Vlist exists now, but is not yet working as a list of
 wordlists.

 wrote >s/o which is the action performed by vocabs.
 Put >s/o in bytecode so that Forth and Vlist can use it.
 >s/o is analogous to >r. If there are < 3 wordlists,
 >s/o will append to the end of the s/o buffer. Other
 wise it replaces the last (top) item. This is so that
 Forth and Vlist will always be the minimum wordlists.

 I want the "Vlist" vocab (which is a list of vocabs) to
 always be available because I want universal names to be
 important and useful in this forth. The idea of this is
 to allow the sharing of code between different developers
 and even between different forths.

 20 mar 2019

 wrote utype and .u" which prints underlined text. Could
 easily adapt to print boxed text (asci box chars).

 If "does>" just calls a word, then that word should be
 coded straight after the data field (instead of having
 a double FCALL).

 Had the idea to animate an object along a track, eg a
 car, or several cars and make them alway avoid each other.

 19 mar 2019

 Made bytecode words (not opcodes) colour green in .xt

 Speed up wfind by copying exactly the bytecode of
 "ffind". They now execute at the same speed. Saved
 the old slow version of wfind as wfind.slow
 Named shortjump if as IF/FI

 18 mar 2019

 Booting on asus e402m in real mode: t/wfind=110ms and
 t/ffind=55ms. These values are only approximate because
 the clock only ticks 17 times per second.

 Trying to use shortjump Until to get a bit of extra speed,
 but its not working.

 Realised that the opcodes "0=, jumpz xx" can be optimised to

 "jumpnz xx". Just wrote Until0 which does "jumpnz"

 * times with "buff" containing "neg", on qemu emulator.

 Originally at 300 iterations, t/wfind took about 1155 ms
 and t/ffind takes 440 ms (on qemu, with nothing in "buff" buffer)
 removing calls to xt+ and xt>name, didnt seem to make any
 difference. Inlining s= also doesnt make much difference.

 recoding 2drop as an opcode, reduces t/wfind to 990 ms
 Making 0= an opcode reduces t/wfind to 935 ms
 Using a short-jump if/fi (+/-128 bytes) reduces t/wfind to 880 ms
 recoding "rot" as an opcode reduces to 825 ms

 Made 2drop an opcode, because I think stack ops should
 be fast. Also, trying to speed up wfind, which is twice
 as slow as ffind at the moment. Wrote "time" to time
 the operation of a word.

 16 mar 2019

 Started to write a foreach pointer iterator loop, so as
 not to have to use ii (loop parameter) in loops.

 r@ and 2r@ and 2r> 2>r should be opcodes, since that should
 speed up looping. In a stack machine, the stack operations
 should be fast.

 doing ’ find.so is nfind noticeably slows down compiling.
 Maybe "ii s/o dup @ 2* + " etc is slowing down find.so
 It would be nice to have "for.each/next" which iterates
 a pointer over an array, with the pointer stored on the
 return stack and decremented by "next". One version for
 characters another for 2 byte cells, etc.

 15 mar 2019
 Adding words to empty wordlists just seems to work.

 Made nfind a deferred word. can now do ’ find.so is nfind
 but first we need to load vocabs for it to work.

 Wrote find.s/o which seems to be working, searches for
 a word in any list in the search-order buffer s/o.
 Now just make it deferred, and assign it, so that tick.p will
 look through the whole s/o buffer.

 Simplified looping through the s/o buffer using for/next and
 ii. This can be applied to "order" as well.

 How to make find work for the whole search order
 Modify "wfind" to be (A n xt -- xt’) search from
 string at A length n, starting from xt. Then write
 a word "afind" which loops through the s/o and calls "wfind"
 Could make "nfind" a deferred word and sub in "afind" when
 vocabs are created, but this will degrade compiling performance
 since nfind is called when compiling every word...

 10 mar 2019
 Worked a little on vocabs. I will define Forth and
 Vlist in bytecode so that they are available right
 from the start.

 wrote xt? to check if an address is an execution
 token. But needs to search all wordlists.

 9 mar 2019

 wrote Un, which decompiles n instructions, and displays
 them paged, in colour. Also configured "see" and "word."

/home/arjuna/sf/htdocs/books/osdev/os.asm Sun Mar 28 21:12:07 2021 10

 to use the new decompiler. Still need to decompile strings
 eg litw:15429
 litw:9
 jump:11
 ... string data ...

 8 mar 2019

 wrote rclear to clear the return stack and put it
 in "abort" which worked.
 Changed bytecode de, to pause after 18 lines, and
 to display, roughly, the number of bytes in the word
 being decompiled. But de, still shows too many bytes.
 Put word. and head. in source code.

 Made in++ to skip one character in the input stream. Made
 s" and ." ignore the leading space (using in++). But
 this makes ." " an error ! which will crash the system

 Made a switch seeanon to show the anonymous buffer in
 "shell". Wrote c> to print a char

 7 mar 2019

 wrote .r and a .rcall that nearly works. Just need a
 xt? (A -- F) word to check if an address is an xt or
 not. Need to handle pcalls!! on rstack!

 How to create colours
 : colour create c, does> @ fg ;
 7 colour .white

 6 mar 2019

 Trying to reduce the number of source blocks until
 "shell" can work.

 System size:
 Opcodes: 1610 bytes (69 opcodes)
 Byte codes: 2845 bytes
 Total size: 21084 bytes (456 total words)

 cmforth introduced the idea of a separate word list for
 compiling words, to avoid the need for the immediate/compilation
 state switch. But I would like to avoid "immediate" altogether
 (because real machines dont really "interpret", as far as I
 can see). So this cmforth idea (in pygmy too) doesnt appeal.

 Wrote elementary abort and abort" but we need to separate "shell" from
 resetting the stacks etc. So no startup message when "abort"
 executes...

 wrote opcode "rpick" which picks element n from
 the return stack. I cant think how else to write ".rs"
 to display the return stack. The alternative
 is to write "n>r" and "nr>" and "ndup" but "n>r" and "nr>"
 can only be tested together (they cancel each other out).

 Wrote a rudimentary stack underflow check using sp<=4096
 although "clear" seems to make it go to 4098
 Also wrote an rstack underflow check, but this seems less
 useful since the return stack always has stuff on it
 (the call to "shell" etc)

 4 mar 2019

 Changed the order of the loop parameters for do/loop on the return
 stack. The counter is on top of the return stack. This makes it
 compatible with "next" and rloop and allows "ii" to work for both.

 3 mar 2019

 Wrote helper functions for loop/Loop/next called (check) and (clean).
 These compress the source code but will make the loops run slightly
 slower. The original compiling loops are in block 63 Added an extra
 parameter (initial value) to for/next so that ii ’ii and "unloop" should
 all work with for/next.

 Wrote loop in source (with a long jump) and also Loop which
 uses a short jump. Wrote a "for/next" loop. If I put the
 loop parameters on the return-stack in the opposite order,
 then I could use the same "ii" word for "for/next". Then I
 could use for/next for thru and get loop out of bytecode...
 etc.

 1 mar 2019

 Made "ls" loop through all vocabs in search order.
 But dogged by the +/-128 byte loop bug (need to convert
 loop to ljump etc). ls is looping in reverse order.

 28 feb 2019

 Still looking at nfind.p and how to loop through each
 vocab in the s/o search order buffer. Once we can do that,
 then vocabs should start to work.

 put pad in source. Also changed its def to use space
 just after the last dictionary entry.

 27 feb 2019

 Put s/o and "context" into bytecode. "ls" uses
 context @ @. But nfind needs to iterate through
 all wordlists in s/o not just context. I still like the
 idea of having a wordlist wordlist which, with "forth"
 will always be available. So "vocab" will do something like:
 : vocab also Vocabs defs create 0 , prev
 does> etc... ; imm
 That is, it will activate the Vocabs wordlist and add the
 new vocab there. Then it should restore the previous "current"
 wordlist.

 26 feb 2019

 Made steps towards using "context" for ls and nfind
 but they use the bytecode context, and not the s/o context.
 We may have to make a deferred word context, or else
 make "context" a pointer to a variable. Yes a deferred word.

 Made an error handler word when a word is not found
 in the dictionary. Also, made this a "deferred" word.
 That is, a word that can be revectored later.
 This is important because it would be nice to look up
 missing words in source code or on the net and compile
 them. This is the start of a "dependency compiler"

 Changed last to use "current" vocab. Which works for
 creating new words. But "nfind" is still only searching
 with "last", so only searches the current wordlist. nfind
 needs to search all wordlists in the search order.
 And "ls" needs to do the same.

 Renamed >code to "dp" dictionary pointer.
 renamed /2 to 2/ which is more standardish.

 25 feb 2019

/home/arjuna/sf/htdocs/books/osdev/os.asm Sun Mar 28 21:12:07 2021 11

 Looking at openfirmware. Also uses anonymous colon definitions

 24 feb 2019

 Changed base to be a 16bit cell, because that is what all
 other forths do.

 Progress to make: fix "last" so that is does "current @"
 Fix prev, only, also, so that forth is always in the search order.
 Make optable a word in the system so we can add new opcodes.
 Make "ops" etc scan through the opcode table (0 terminated, or
 with length at opcode 0).

 Look at Pygmy forths x86 assembler, which is reputed to be
 well implemented

 21 feb 2019

 Ideas: To implement D+ well, we need "add with carry" and "add with
 overflow" etc like all machines actually have. But we can
 just implement it by using the FLAGS opcode and examining
 the individual ov/ca flags. But implementing "flags" on the
 machine is tricky, because every opcode needs to update the
 flags properly.

 Recoded "defer/is" to actually compile an opcode/fcall into
 the buffer. This allows opcodes to work with defer, which
 is handy. So we can do:
 Defer steep ’ swap is steep

 wrote a "reset" word which sets dp and here to point
 just after the wordname count field. So colon can be defined
 like " : : create reset ; imm " Although that is a circular
 definition. Or try this...
 [create :] create reset ;
 I found this necessary while trying to write a Defer word
 which is just a buffer to contain code...

 20 feb 2019

 Realised that dont need "zerolink" word, because create gets the
 backlink from last/latest. When a vocab is empty it will have a zero
 backlink anyway. We will just make latest do "current @". And when
 create sets last, we will set current instead. So current will have to
 go into bytecode, and it will point to a "dummy" vocab (the core words)
 until we define real vocabs in source code.

 19 feb 2019

 Another interesting word would display the search order
 of wordlists and the name of the last word in each.

 Trying to respect the forth standards and traditions more
 by renaming my non-standard words to something different
 but similar to the Ans forth word.

 Made alot of progress implementing standardish wordlists.
 Eg: words.. order, also, defs, context, current, vocab etc
 Now I need to change the way find gets its search start.

 Another idea, just use blank lines in blocks to index
 end/start of words. Can still use an indexing word like
 ## , maybe at the end of the block. If at end, then
 have a reverse count (length) at end of block

 moving away from the idea of having a "wordlist" wordlist.
 That is a list of wordlists. So, all the "vocabs"
 such as forth, editor, assembler are words in the
 core dictionary. But this means there is no simple way to

 display all existing wordlists.

 18 feb 2019

 Renamed l.addu etc to li/addu which seems more forthish,
 but wordlists may obviate such things.

 Started to write a set of words to implement wordlists
 (which I like to call namespaces or vocabularies).

 Copied useful words vector and cvector from the Ron Geere
 book. Dont know if they will work. Good test for interactive
 and block compiling. Seem to be working when compiled from
 source.

 Wrote nrect, which makes a rectangle with line of
 thickness n. todo... ncircle etc

 try to display coloured circles in a grid (like an
 iphone calculator.

 should write "where" word which shows in which blocks a
 word is defined. eg where Var will list block numbers, and free space
 in block.

 17 feb 2019

 Wrote "ccpoints". A pseudo circle with midpoint (200,200) radius
 80 can be drawn with
 "200 200 80 35 ccpoints 35 ctrace"

 Wrote circle and fcircle but they seem quite slow. Also
 changed "pong" to use fcircle to show the ball.

 Wrote "circle" with x^2+y^2=r^2

 Tried to write um/mod but it doesnt seem to be working
 Just behaving like u/mod

 um/mod (ud u1 -- r q)
 This can be used as the basis for double precision math
 see "math.txt" at flashforth. If quotient is too big for
 16bits then its an error

 From math.txt
 (n1 n2 -- d)
 : m* 2dup xor >r abs swap abs um* r> ?dnegate

 16 feb 2019

 wrote um* as an opcode. To write D. and UD. might
 need uD/ and D/ double division. Fixed u. bug caused by
 change in /mod (signed). Looking at pforth source. Should change
 JUMPS to branches? and pix to plot. Half wrote u. in source.
 This might be useful for D. Also it is probably better to write
 words like <# # #> for number conversion and use a temporary
 string rather than just outputting the numbers directly.

 14 feb 2019

 A solution to block limitations... have an index word
 at the top of each block. eg ## with binary indexes following
 indicating the start of each word in the block.
 Also, at the end of the block, a continuation word such as
 ... which indicates that the word continues in the next
 block.

 12 feb 2019

/home/arjuna/sf/htdocs/books/osdev/os.asm Sun Mar 28 21:12:07 2021 12

 todo
 write a : circle word using y=R*sin(x) and then
 or just use x2+y2=r2
 print 4 points for each x (ie x,y x,-y -x,y -x,-y)
 Adapt ron geeres trig functions.
 write : ccpoints (n a b -- / which returns n points on
 the circumference of a circle on the data stack. Then
 use those points to draw lots of radiating lines.

 Wrote "lineto", sspoints, and polar to give polar co-ordinates
 Turtle graphics are pretty close.

 A new solution: dont have an "anon" compile buffer. Just compile
 non-defining words straight after the last word in the dictionary,
 keeping a marker of the end of the last word. This has the advantage
 of allowing anonymous compilations of any length (not limited by
 the "anon" buffer.

 A problem: "defer test ’ nop is test " is going to fail
 because "nop" is an opcode. So defer will only work with procedures
 (words). This is part of a bigger problem... that opcodes and
 procedures always need to be treated differently.

 One solution might be to include, eg: NOP, EXIT just after the
 opcode header for "nop" and just before the machine code for nop.
 This would be the execution token for nop and would allow the
 opcode to be called with FCALL, nop.p . It would also allow words
 like "is" to work just as in standard forths.

 Also PCALL would just work with opcodes as well and we could
 execute all opcodes in "immediate" mode without having to compile
 anything. (Currently they are being compiled to obuff.d with
 and EXIT and then PCALLed)

 The disadvantage is and extra 2 bytes per opcode.

 10 feb 2019

 Working on n degree rotation matrices using scaled trig
 values (sin*10K, cos*10K). Had the idea for tab complete
 for long words. Should be able to use the s/ word to
 implement tab complete.

 9 feb 2019

 Wrote the scale */ operator (n1 n2 n3 -- n1*n2/n3) which
 seems to be working for signed numbers. But still hangs
 for eg: 1234 1234 23 */

 Apparently fixed the signed /mod problem by using "idiv"
 signed division, with the cdw to extend sign from ax to dx:ax
 (which is the register pair used by idiv as dividend). But should
 I used cdw with u/mod as well?

 8 feb 2019

 Made a key? opcode using int16h ah=1. Made a sign wave graph
 but discovered that my /mod / mod dont work with negative numbers!!
 which is a big handicap. Need to look at "idiv" instruction.

 Wrestling once more with the code>here bug.
 [create aword 1 , 2 , 3 ,]
 fails in source and interactively because the dictionary
 code point ">code" is not updated by , or c,

 [create aword 1 , 2 , 3 , code>here]
 Appears to fix the problem but is very inelegant.
 Also wrote a word "sync" in bytecode that sets dp=here if

 dp < here

 All these problems could be avoided by compiling everything
 into the dictionary (even anonymous definitions). But that means
 that after every new word definition we would have to build
 an anonymous header which would slow down source compilation
 quite a lot.

 6 feb 2019

 Current size of the system is:
 Opcodes: 1493 bytes (63 opcodes)
 Byte codes: 2920 bytes (74 bytecode words)
 Total Size: 15550 bytes (328 total words)
 The bytecode space has reduced slightly as we move words
 into source code (do/loop etc)

 Would like to put "loop" into source, but I dont have enough
 room in block 0 (used by thru also there). Also need to
 change jumpz in loop to jumpnz/ljump.

 Wrote [call:] <name> which compiles a call to the procedure
 at runtime. This is also like a double postpone word.

 Working on an archane word [op:] <opcode> which compiles
 the named opcode at runtime, I think. This word is useful
 for writing words like if/do/loop/again etc. But there may
 be a simpler way. For example, write a (loop) word that
 performs the runtime behaviour of "loop". This avoids having
 to compile code when loop is compiled. This is hard to think
 about because the compile time for one word is the runtime
 for another.

 5 feb 2019

 Maybe "colour pong" would be a good challenge now, for this
 forth. And then try to compile it to native code.

 Would like to make a little "glyphmaker" word to create
 xysets which can be displayed as glyphs (either with asci blocks
 or with pixels). When displaying with asci blocks the aspect
 ration is >50% because asci glyphs are 8x16 not 8x8

 Made rotations of glyphs work using rot90setn which rotates
 90 degress about point n (0,1,2...) of an xyset (point set).
 A small animation "arot" demonstrates. Because the coordinate
 system of the screen is +down, -up the rotation actually appears
 to be happening counter-clockwise, but the matrix rotation is
 actually positive.

 A useful paradigm for paging and exiting out of a begin/again or
 begin/until loop if "q" is pressed...

 (nn counts words, ll counts lines typed)
 0 nn ! 0 ll !
 begin
 (print 8 words to a line)
 nn ++ 8 mod 0 = if
 cr
 (page and prompt every 22 lines)
 ll ++ 22 mod 0 = if
 1 fg [char] > emit key
 (quit if ’q’ pressed)
 [char] q = if exit fi
 0 bg cr
 fi
 fi
 again

/home/arjuna/sf/htdocs/books/osdev/os.asm Sun Mar 28 21:12:07 2021 13

 4 feb 2019

 Could write word u.s to display the stack as unsigned values.

 Might be useful to have a postpost word for situations as
 below. Made asci box displayer "abox"
 Wrote rainbow for colourful text.
 : rb" (print rainbow coloured text)
 post s" ’ rainbow literal post call, ; imm

 Started to write some matrix rotation code.
 Wrote a simple "ms" based on a loop. Could do better
 Thinking about asci tetris, xysets, xyglyphs, matrix rotation
 glyphmaker etc. Interesting maths in all this and seems quite
 easy to implement in forth.

 2 feb 2019

 Started to write "edit" based on accept.arrow. With some
 success. However the stack params should be changed
 to include a text length, because not all buffers are
 counted... The length could be stored in a variable.
 Also, showbuffer can be eliminated.
 So, need to change various words.. eg prevc, nextc, ctype

 Looking at the wordlist words such as context, current,
 vocab, also, only, etc. I may modify some of these words
 because I want the idea of namespaces to be quite strict.

 Started to move to unix line endings \n=asci 10
 not dos endings. Ignoring asci 13=\r

 1 feb 2019

 Now get rid of accept.byte in bytecode.

 Accept.hist is useful because it has some command history.
 But it needs a lot more history. Also, it would be nice
 to be able to write this history to disk. Thus we would
 have a system that can be developed on itself.

 Also, need an "editor" which is like accept.hist but displays
 multiline buffers and can navigate with all arrow keys. Same
 strategy as with accept.hist (use showbuffer/ctype after every
 keystroke to show the buffer) and same stack structure
 (x y A A+i) .

 Made accept.hist save the buffer after /enter/ is pressed.
 Rewrote if0 and ifnot to reflect new longjump if version.
 Made "defer" and "is". These words allow
 installing new versions of "accept" into the shell for example.
 We can use is like this: ’ accept.hist is accept
 This makes the shell (which is already compiled to use the "accept"
 deferred word) use "accept.hist".

 31 jan 2019

 Rewrote if/else/fi using jumpz/ljump combination which should
 allow long text in if clauses.

 Acceptx is almost working, only bugged by the if/fi +/- 128 byte
 bug. But it is working with command history (2 buffers)
 Removed fi.p bytecode and replaced with source.

 The machine needs a sign extend instruction, eg signed extend
 byte on stack to word.

 Also, should c@ and c@+ convert bytes to signed words (16 bits)?

 What is the utility of this? Bytes are used as relative +/- jump
 addresses, but not on the stack...

 Trying to improve dump, but should dump display signed or
 unsigned hex bytes, or should it display words? Wrote xytype
 and xyemit.

 30 jan 2019

 Made PIX display pixel with the forground colour. Made
 CURSOR opcode which sets the shape, size of the opcode.
 This is useful for making the text cursor disappear which
 is often desirable.

 New ideas for anonymous words: What is now the anonymous
 buffer will become part of the dictionary. When create
 executes it will check if anon exists and overwrite it, if so.
 When does> or semi-colon executes, it will re-establish anon

 29 jan 2019

 Made "acceptx" work, except for the distracting blinking cursor.
 Also, it only really works in text mode 3 because as far as
 I can see, that is the only mode that displays background colours.
 In other modes we can use different cursor (eg forground colour)
 by modifying the "ctype" word.

 wrote "prevc" and "nextc" to advance and regress the insert (cursor)
 position.

 27 jan 2019

 wrote delchar and insert. Thought about what happens when
 "move" tries to move 0 chars. It seems to work.

 26 jan 2019

 Modified showbuffer to use green cursor. Trying to change
 acceptx to do a proper backspace. need to debug.

 Made background colours work in video mode 3 by modifying emit
 to use ah=0x09 int 0x10 function. Modified "ls" to print 8 words
 to a line.

 Strange things with qemu and video modes and background colours...
 In video mode 3, function ah=0x09 prints forground and background
 colours, but in mode 16, it only prints forground colours.

 Also, using ah=0x09 int 0x10 then everything gets printed on one
 line (if there are no explicit line breaks) but with ah=0x0E int 0x10
 then text is displayed on successive lines of the screen.
 In video mode 3, ah=0x09 cannot print any colours.

 In conclusion: to get background colours, we need to use function
 ah=0x09 int 0x10 with video mode 3, or similar.

 It doesnt seem possible to get background colours with
 function 0x0E int10 but it is with Ox09. But 0x09 is a
 bit more work because we have to advance the cursor.
 Also 0x09 print 13,10 as visible characters (not carriage
 return)

 25 jan 2019

 wrote cmove which is just "move" but can handle overlapping
 memory areas where A > B and A < B. Appears to be working.

 24 jan 2019

/home/arjuna/sf/htdocs/books/osdev/os.asm Sun Mar 28 21:12:07 2021 14

 Now ready to move on to acceptx using x y A A+i and "showbuffer"

 If words are immediate and should not be, strange errors occur.
 An vice versa.

 wrote "append" which appends characters to a counted string.
 rewrote "all" to load from last loaded block to n.
 wrote "defblock" which puts on the stack block number of
 the first def of the word. wrote "lo/" which tries
 to load all blocks up to a particular word. This is a kind
 of ersatz dependency loader.

 We can create a string constant in the dictionary with
 : message s" hello" ;
 but this contains an unnecessary jump opcode at the
 start of the definition.

 22 jan 2019

 The conversion of acceptx to showbuffer should be quite
 straight-forward once showbuffer is working well.

 Bug!
 The phrase "10 10 pad pad 4 + showbuffer" is causing a strange bug...
 But the word "..sb" works ok! So interactively showbuffer doesnt
 work but it does within another word. An unusual bug, and its
 too late tonight to work it out...

 Working on "showbuffer" word to display a buffer at x,y on
 the screen with a cursor. Will change acceptx to use it.

 Realised that editing with arrow keys requires a different
 approach in "acceptx". Need to reposition cursor and display
 buffer on each key stroke. But will there be flicker?

 Fixed a getxy bug which made getxy eat top stack item.

 It would be good to have a word eg "showdef" that shows the source code
 for a word from the source blocks. Could just use a dodgy parse for next
 ’;’ to get the end of the word.

 Made "ss/" print the line with "typeline". But typeline could
 just use parse, no?

 Made "s/" and "ss/" work with the new (almost standard) "search"
 word.

 The idiom to print 3 things to line is
 20 0 do
 ./ print something
 ii 1+ 3 mod 0 = if cr fi
 loop

 Removed the bytecode "again" version.

 Apparently fixed ljump.x bug (si-3 not si-2 to realign) and
 wrote a source "again" using ljump which seems to work.

 Thoughts for words: write a "para" word which is like
 "accept" but accepts a whole paragraph, and hopefully
 allows key editing. Also extend acceptx to allow arrow
 key movement and insertion. These are steps towards writing
 an editor.

 21 jan 2019

 Made a source "again" and a long jump version.

 The begin/again 128 byte bug continues to vex: The solution
 is to compile something like
 jumpz, 4; ljump -200,
 That is compile a short jump over the long jump. In fact
 we can check if the target is > +/- 128 bytes and then
 compile the short or long jump depending.

 Made "search" more standard. But ..search is freezing because
 of the above bug. Also need to integrate the new search in
 ss/

 20 jan 2019

 Thoughts on the linked list dictionary. If other link
 fields are included then each word can belong to
 one or more "categories" not just namespaces. This increases
 the complexity of the dictionary but also the classificatory
 power. link field format: n:link, m:link0 etc where
 n,m are ordinal references to the category list.

 wrote "cmove" to copy data from source to destination with
 dest correct if areas overlap.

 Made wsize a bit more accurate. (mostly correct). Wrote
 "size" which makes wsize easier to use. Tried to change
 "search" to leave the found address but gave up for now.
 Copied some double number definitions from the Ron Geere
 book.

 19 jan 2019

 Wrote a square, octagon drawing words, from a "line"
 word.

 18 jan 2019

 words: "ns" provides a pointer to the namespace list.
 "name <name>" create a new namespace (pointer) in the
 namespace list.

 17 jan 2019

 Thoughts on source structure: Keep the block structure because
 it is simple, but have an index which somehow give the location
 and lenght of each word, without naming each word...

 Almost fixed the behaviour of parse so that it returns rest of input
 when the char is not found. But one char is being truncated.

 Made a word ss/ which searches source blocks for a word.
 But whole line search is truncating one character. See BUGS

 Made substr which checks if a string is a substring of another.

 16 jan 2019

 Need to write a "copy" or "cmove" (standard)
 word for copying strings/data etc. The word is called cmove
 because when the data areas overlap only the destination is
 correct. Otherwise it behaves just like a copy command.

 This will be used by acceptx to recall history With the
 arrow keys. Need to improve "dump" so that it shows asci characters
 too and put 8 or 16 on a line.

 coded "if0" based on the source version of "if". Worked on
 acceptx.
 Made an alias for if0 with the idiom ": ifnot post if0 ; imm"
 This seems a bit counter intuitive since if0 is itself an

/home/arjuna/sf/htdocs/books/osdev/os.asm Sun Mar 28 21:12:07 2021 15

 immediate word. But it appears to work

 When an error occurs, made "inputcompile" print the last word
 compiled in the dictionary. Handy for debugging.
 Also, add a "block number" to the block buffer, so we know
 what block is currently in the buffer, also handy for debugging.
 Also, add a "updated" flag in the block buffer, so that we
 know when the buffer needs to be written to disk.

 15 jan 2019

 Bug! begin/again and begin/until compile to relative jumps
 which have a limit of 128 bytes!! This is not enough!.

 Need a "break" word that will jump just after the next "again"
 or "until".

 Its not necessary to use unloop in a begin/again or begin/until loop.

 Wrote word ’s/ <prefix>’ which displays all words starting
 with the given prefix. Also wrote "prefix" and a test loop
 for it.

 fixed a bug, bfree was eating the stack, causing .s to crash
 after ’df’

 14 jan 2019

 Bug??! unbalanced >r r> will crash the shell because
 pcall anon will not return properly. There should be a
 way to "reset the stacks" (both data and return). Eg when
 an error occurs

 Also: make "anon" a namespace (so a "sub" linked-list) which
 will contain command history (like the bash history file)
 Allow an up arrow in "accept" (use ekey)

 refining ideas for namespaces: We can create a new word such as
 :: <namespace> <word>
 This will search for <namespace> in the namespace list. If not
 found it will create a new namespace variable in the list (with
 a null pointer since there are no words in this namespace, yet).
 Then it will create the <word> in the new namespace. Creating the
 new word involves creating a word with a "zero" backlink (since
 this is the top word in this dictionary) and then updating the
 namespace variable to point to this new word (since it is the
 last word in the list).
 ::var <namespace> <variable>
 Will work in a similar fashion

 11 jan 2019

 An interesting idea!!!: All anonymous commands should be compiled
 to the dictionary!! That is, words entered interactively should
 be compiled to the "anon" buffer, (as is done already), and then
 copied to the end of the dictionary with the name "anon0".
 The only major change is that the anon buffer should also have
 a back link to the last word in the dictionary.

 Also, new defined words are first created in the anon buffer
 and then copied to the dictionary. This may even resolve the whole
 here>anon and here>code problems.

 (Also anon2 is renamed anon3, anon1 is renamed anon2 and anon0 is
 renamed anon1... this allows for a simple "command history", at least 3
 previous commands. Also, this idea is a step towards "dependency
 compiling", which involves trying to compile a word even even if its
 dependencies (constituent words) are not in the dictionary.

 Code is compiling.

 There is a "creation" namespace: All new words created will
 be put into that namespace (linked list) until further notice.
 Then there is also the "search" namespace(s) which are an
 ordered list of namespaces to search for the given word.
 The first one found is executed/compiled. And finally there
 is a unique-name namespace which only applies to the word
 immediately following it.
 For example: "forth.math pi"
 will only search for and exec/compile the word "pi" in the
 forth.math namespace

 While fiddling with the code yesterday, about 17 words mysteriously
 disappeared from the loaded dictionary.

 The words source, load and inputcompile should return a
 flag indicating success or failure. This should allow error
 trapping and easier debugging.

 Thoughts: when loading blocks (or namespaces) a better
 message should be displayed (we could put that in "thru")
 Namespaces should be a namespace! This cryptic phrase means
 that a word which is a namespace (eg: forth.core) should
 be in the namespace "namespace". Now, the word "dup" for example
 is in the namespace "forth.core". Clear as mud. But by putting
 namespace words in their own namespace we can dealwith them
 differently. Maybe opcodes should also be in their own namespace
 but I havent thought that through.

 24 dec 2018

 Need to solve several problems before writing more forth
 code. Dependency problems. So a word should be able to look up
 obtain and compile its dependencies. This is not so hard: the
 process is, look in the forth dictionary, if the word is not there
 look on the disk, if the word is not there, look on the net
 using fullname.

 Namespaces will be handled by interleaving the lists within the
 same dictionary. Each word will only link back to the next word
 in its own namespace (or domain). So there will be several linked
 lists interleaved in the forth dictionary. At the top of the dict
 there will be a "start-link" table, associating namespaces with
 where to start searching in the dictionary.

 This system should be much faster for look up and compiling that
 having a domain name prefix field in every word.

 The other problem in being able to search the code on disk for
 a word without compiling all words. This may be handled with a
 simple character lenght field at the start of each word. This
 allows the coder to skip over that word if it is not the searched
 for word.

 Compiling a word with dependencies: Start to compile a word to
 a "compile buffer" (not to the dictionary). If the word compiles fine
 then copy to the dict, if not leave a space, search for the dependency
 word on disk/net and start compiling the dependency word to the
 compile buffer after the incomplete word. Then copy to the dict.
 This is recursive.

 24 august 2018

 A few more move vectors for chess pieces. Thought about
 words ,{{ } and {{ } which compile byte data to a given address.
 eg c,{{ 1 2 3 4 5 } or 1234 c{{ 1 2 3 4 }

 22 august 2018

/home/arjuna/sf/htdocs/books/osdev/os.asm Sun Mar 28 21:12:07 2021 16

 Created the chess vectors for knight and bishop on a 12x8 board
 See the arduino book for a sketch of how to code chess in this
 forth. Source code on disk needs to be stored in a structured fashion.
 Or maybe have shadow information about start and end of words.
 late july 2018
 Started a port of this machine to the atmega328p avr chip
 (the usual "arduino" chip). Then got distracted coding timer/counters
 in avr asm.

 19 july 2018
 A big challenge is going to be accomodating Harvard architecture
 microcontrollers within this machine. Where code and data space
 are separate. Flashforth may have some answers for this.

 17 july 2018

 Should use asciidoctor and asciidoc format to create a printable
 version of this source code. Wrote a palindrome word, which uses
 recursion, and is possibly the simplest recursive descent parser...
 Did some work on the ’deps’ word, still not recursive. still grappling
 with code>here problems. hard to visualise. The simplest way seems to
 be to update the dp point if code < here in the here! word. But this
 is not working.

 Machine: 4th.x86.topdx.17july2018-11pm
 Opcodes: 1410 bytes (62 opcodes)
 Byte codes: 3078 bytes (82 bytecode words)
 Total Size: 11335 bytes (250 total words)

 16 july 2018
 might be good to have a begin/until which has a counter
 with no limit. wrote "page" which prints text one screen
 at a time.
 wrote ’println’ which is like type but only prints one line.
 Hopefully fixed a bug in li/0 which sets a list to zero
 probably will put code in c, and , to update dp if
 necessary.
 11 july 2018
 made some progress on : deps. fixed a bug in list.addu
 more ’create’ bugs... The following line doesnt work
 [create pawn 1 c, 2 c, 3 c,]
 This is because the dp pointer is not updated after the c,
 words. So, ’here’ is updated, I think I need to change the
 way ’here’ and dp work.
 6 july 2018
 wrote ’within’. ppm image format easiest to display, or pgm as a glyph
 a random number series. an editable buffer,
 test.tonumber and test.type removed from bytecode
 4 july 2018
 also accept can be put in source.
 wrote a source ’accept’ with a maximum number of chars. used
 a helper variable. wrote a ’continue’ which jumps out of an
 if clause and back to begin. But will fail for 2 nested ifs
 tried to write an accept with arrow keys but got lost.
 simplest random seed using the clock, but need a series.
 eg var R : rnd clock drop 16 mod ; : r’ R @ getnext R ! ;

 2 july 2018
 Would like to write ’accept’ as source with some command
 history.
 cleaning up. removed old some bytecode words like ’seecomp’
 and ’one’ which were used to debug the system. Left dotstack.p
 as bytecode because it could be useful to debug bytecode words.

 1 july 2018
 Moved [and] into source. wrote a new shell in source.
 opcodes: 1410 bytes (62 opcodes)
 bytecode: 3689 bytes (89 bytecode words)
 total: 9427 bytes (221 total words)

 30 june 2018
 wrote a source .S version of .s
 should add some command line history and write that history
 to blocks, so that work is not lost. write accept as source
 and allow arrow keys to edit. Multiline accept. Make an
 asci sperm whale

 29 june 2018

 asci animals: could do sperm whale, python.

 28 june 2018

 Writing a little chess: code. Also fixed a cbw sign extension
 problem for c@ c@+ probably caused in the transition to
 the top dx engine.

 Tidying up lib.p block0 now loads all the other blocks.
 Made numbers and opcodes work in immediate state. The ops
 get compiled to a short buffer and executed immediately.

 working on the buffer editor ed: so as to try to make this
 forth self-supporting. That is, to be able to edit and develop
 the system with no OS. Need lots more ’line arithmetic’ to make
 it work. Also, how to edit over rs323 connection. eg vi etc
 opcodes: 1404 bytes (62 opcodes)
 bytecode: 3852 bytes (212 words)
 total: 9059 bytes

 27 june 2018
 An x86 assembler can work like this
 code: doit ax inc, ax bx sub, ;code

 So the operand comes first and is pushed onto the stack, then
 the inc, word compiles the mnemonic with its operand. This raises
 the questions of wordlists and vocabs. ax is a word in the
 assembler word list.

 Recursive factorial, and arithmetic, calculate e exponent.
 Put domain fields in some words. The recursive factorial
 is very succint, like gcd.

 26 june 2018
 All this needs reconsideration. But the domain table idea
 seems sound at the moment. (See later notes about an
 interleaved dictionary for namespaces)

 This is claytons object orientation. Domain table is like this
 domain.table:
 db 1, 0, 3, ’4th’
 db 2, 1, 1, 4, ’set’
 ; extra space here for new domains

 the 1st number is the domain symbolic constant, used in the domain
 field of the compiled word. The second is a count
 of how many prefix domains (none for 4th) then comes a list of prefix
 domains as symbolic constants, then the counted string name. This is
 compact for compilation but allows all names in the dictionary (and
 outside of it) to be unique. Claytons oo is like this

 * define the object and just return a reference to the obj
 at runtime
 : set create allot blah blah does> blah, not much ; imm :dom

 the word ’:dom’ compiles a new domain for the last compiled
 word. The new domain ’set’ with possible prefix domains
 will be appended to the domain.table if there is sufficient
 room. So defining words should automatically set the domain

/home/arjuna/sf/htdocs/books/osdev/os.asm Sun Mar 28 21:12:07 2021 17

 of defined words to the same as themselves?

 * create an instance of the object
 20 set ss
 When set create ’ss’ it probably should sets its domain
 automatically to ’set’?

 * create some words which operate on a ref to the instance eg
 : additem (address --) blah blah ;
 * set the domain of the new word to set
 dom set. So additem has a full name of ’4th.set.additem’ but
 it could still be used by a different object.

 * use the new method on the instance
 ss m> additem
 ’m>’ can use the reference to ss (left on the stack by ss) to
 get its xt and therefore its domain. Then use that domain to
 do a special find only searching for that domain.

 m> could change the domain used by ’find’ when searching
 for a word (eg ’additem’) in the dictionary.

 So find will only find ’methods’ of ’set’ because they are the only
 words with that domain. But normally these words/methods will be
 invisible to find because the domain will be ’4th’ or somesome.

 Write a word that prints fully qualified names using the
 domain field in the compiled word eg
 4th.set.additem etc

 Apart from using this as a claytons OO system, it is a useful
 step towards universal unique locatable names in source code.

 Thinking about domain fields and how to use them. Have got
 this schema so far: domain field is 1 byte in each word.
 the ’find’ word has an implicit or explict domain during its
 search. Or a list of domains. So when we do a normal ’find’
 we wont find words with different domains unless we explicitly
 search for them. This may be parallel to forths ’wordlist’
 concept, same same but different. Also, we can take one step
 towards an object system by hiding object methods in their
 own domain.

 25 june 2018
 Working on the ed: edit buffer object. This seems promising.
 Once we can edit a buffer then the system becomes almost
 self sustaining. Started to put in domain fields. (revise to namespace)
 Wrote a list: data type that has an addu "method" for adding
 unique elements as well as a normal add method. I think the
 code is more readable. Wrote allot0, dump and dumpw
 wrote !1+ but not !1- That is, decrement the value
 at the address and store new value there.
 Modified list: so that object reference is no longer left on
 stack. Wrote ’thru’ to load a series of blocks.

 .’ prints in what word an address is found, and the offset from
 the start of the word.

 Thinking about how to code data structures. Put one reference
 on the stack and make ’methods’ that access and manipulate
 part of the structure. Also, make the methods use a
 simple reference to the object. Eg an editing buffer has
 capacity, insertion point and pointer to buffer.

 24 june 2018
 Found a bug in r@. Needed to dig under the word return pointer
 (of r@ itself).
 One extra ’;’ causes fatal errors.
 made the ’unloop’ word which is needed for exiting from

 loops before the counter has finished. wrote erase and fill.
 Wrote set.ls and set.add and set: which appear to create a
 set that only contains unique items (16bit elements).
 opcodes: 1302 bytes
 bytecode: 3847 bytes
 total: 8274 bytes

 23 june 2018

 made atxy and getxy as opcodes to obtain and set the current cursor
 position. wrote ’arrow’ to move cursor around. Now the trick is
 to move the insertion point around in a text buffer. This is a map.

 Cant do an exit from a do/loop, need an unloop or ’leave’
 word which will get the loop parameters of the return stack.

 The create bug still exists but can be avoided by putting does>
 at the end of defining words. Will try to write ed which
 allows basic editing of a buffer (1024bytes) which can then be
 saved to disk with ’save’.
 opcodes: 1270 bytes
 bytecode: 3839 bytes
 total: 7770 bytes

 22 june 2018
 made write.x appear to work. Wrote ’save’ which saves the first
 buffer to disk block n. This maybe enough to use the os to
 develop itself. Only tested on qemu. Need to test on real hardware.
 But need some kind of editor to edit buffers/blocks.
 opcodes: 1245 bytes
 bytecode: 3829 bytes
 total: 7322 bytes

 included a "sanity-check" in the block writing routine which
 checks that the number 31415 is the 8th byte of the boot sector

 21 june 2018
 Since the aim is to achieve a minimum size and simplicity while
 maintaining portability, it is useful to record the system size.
 opcodes: 1231 bytes
 bytecode: 3829 bytes
 total: 7280 bytes

 Regarding the create runtime bug (dictionary code pointer not
 advanced etc):

 Wrote ’def’ to set the defining control bit in a word.

 After consideration, we see that defining words, when they
 exit at run-time need to do essentially what ; semicolon does
 at run-time. However, when a defining word runs, there is
 no semicolon. This arises because the system compiles even code
 which is entered interatively. When a defining word stops
 defining, the compile point needs to be switched back to
 the ’anon’ buffer and the dp point needs to be updated.

 One solution, is to make CREATE set a ’def’ control bit in
 the count byte of the name. So create becomes an immediate
 word and compiles a call to (create) which is just the
 same as the current create. Then when semicolon executes
 it checks def control bit, and if set, compiles a context switch.

 This bug also effects does>. The does> bug seems fixed by
 essentially putting ; semicolon code into (does>)
 We could write (;) a runtime semicolon.

 20 june 2018
 Struggling with this code>here bug in defining words. One hack
 is to define var like

/home/arjuna/sf/htdocs/books/osdev/os.asm Sun Mar 28 21:12:07 2021 18

 : var create 0 , code>here ; imm
 but that is inelegant. When I put code>here into c, I seem to
 get a complete meltdown, maybe a stack overflow, or infinite
 loop. Not sure why yet.

 Discovered a bug in the way that code>here is called at the
 end of a new defining word, so that space is not allocated
 for the data field of the new word. So when we execute a defining
 word the defined word doesnt get any data space. This is
 tricky, maybe c, , and allot etc also need to update dp or
 call code>here. Or in here>anon call code>here first so that
 the code compile point is set correctly

 Wrote ’mname’ which shows the machine name and
 signature, and maybe opcodes. Edited the bash script cos.sh
 (and .bashrc) so that todays date is inserted in the machine name
 when the code is compiled. This helps to know what version we
 are running.

 19 june 2018
 in’ or in.xt is a useful word. Finds the word in which a memory
 address occurs (this is not its standard name) and returns
 its execution token.
 Wrote a new bash function ccos so that I can compile different
 versions of the machine easily.
 18 june 2018

 Realised that a unique machine name is useful for installing or
 compiling new opcodes. The name indicates the underlying hardware
 and the 2 stack machine implementation strategy.

 Converted to holding TOS (top-of-stack) in the dx register.
 This should improve performance, especially for calculation
 intensive operations. But the performance difference is not
 very noticable at the moment.

 Need better error reporting in IN, or item, so we
 can work out where something is going wrong.

 If exec.x was an opcode and could call itself, then using call/ret
 for each opcode may have some useful and interesting consequences.
 But real machines dont seem to do this (an opcode which can call
 itself), and I cant think of any immediate benefit.

 Converted call/ret in exec.x/opcodes to
 jmp [] etc. This appears to be working.
 Thinking about using jit just-in-time opcodes which would allow
 the compilation to machine code of the most used words. thus
 improving performance. Conversion appears initially successful.

 17 june 2018
 will try to convert ’calls’ in exec.x to jumps (done). which should
 save code-space and time. Old version saved to os.call.asm
 16 june 2018
 fixed do/loop to make it standard. fixed sed preprocessing
 for ’times’ lines. wrote write.x but havent tested.
 wrote timeloop to do simple performance testing. appeared to fix
 read.x by using int 13h ah=8 function to get disk parameters.
 On the asus computer, sectors=63 and sides=32 drive=0
 15 june 2018
 Could write a ’set’ type, with a capacity and length, with
 an ’add’ method, which would only add a 16bit value if it
 wasnt already in the set. This would be useful for building
 a set of unique xts (execution tokens) when finding the
 compiled dependencies for a given word. Also, could adapt this
 technique to a ’point set’ where each element in the set is
 2 16bit values, which could be used for making a list of
 block number + offsets for a dependency compile from source
 (only the required word and its dependencies are compiled).

 Realised that the exec.x function could just jump to the
 opcodes, rather than calling them, which would simplify
 the coding of each opcode.
 made ’splash’ show opcode and byte codes sizes. changed ’ to
 make it more standard. rewrote ." to simplify
 trying to write a new read.x to calculate chs for floppy
 emulation, but need to print off and analyse. Thought of
 a dependency compiler creating a list of block numbers
 and offsets.
 13 june 2018
 realised that if fi begin again etc can all be coded in
 source.
 12 june 2018
 made a splash screen ’splash’. Saw how the scale operator
 */ is useful for multiplying by fractions without losing
 precision eg: 100 2 3 */ gives 2/3rds of 100. The intermediate
 result is a double number.
 could make ’state’ have 3 states, not 2. ie immediate/delegate/compile
 in immediate, everything is compiled, in delegate, the word
 itself decides whether to compile or execute, and ’compile’ where
 everything gets compiled even immediate words.

 11 june 2018

 can define [char] like this.
 : [char] postpone char postpone literal ;
 defined ."
 Also postpone could have a
 syntax like [: ... :] which basically would force even immediate
 words to be compiled. This would just be a branch in the
 item,/compile, word.

 fixed parse so that it doesnt include final delimiter
 started a sed preprocessor in a separate file ’os.sed’ Need to stop
 os.sed from mangling labels like ’block1:’ etc. Realised that postpone
 is an important word. It just compiles an FCALL to the word even if
 the word is immediate. Can be defined in source. Thought about how to
 emulate opcodes in high level forth. The opcode calls a word similar to
 FCALL that pushes address of emulating word on call stack. But need to
 do some very simple assembling to get the write address into the
 machine code. Does ’call,’ need to be immediate?

 10 june 2018

 Made ’postpone’ which compiles an fcall to immediate words like
 sliteral (otherwise they would execute immediatly). This is because we
 want sliteral to execute when parse has finished (at run time) not at
 compile time. Made s" using postpone.

 Did sliteral and (does>), the runtime behaviour of "does>" and
 wrote does> . Made call, (xt --) to compile an FCALL to xt
 realised the importance of (does>) and other (...) words.
 Otherwise we would have to compile lots of code while
 executing ’does>’.
 9 june 2018
 Made the preprocessor put a 13,10 at the end of
 each line because plain text source will have them. This allows
 a comment-to-end of line syntax which is handy.
 Fixed a problem in HERE>CODE. This word executes
 the ANON buffer but was not resetting it, so
 words like IMM were executing multiple times.
 FIB stopped working today, not sure why
 Made a LITERAL word to use with CHAR in colon defs
 more or less fixed PARSE. so comments like (a b --) are
 easy now. eg: : ([char]) parse ; imm
 8 june 2018
 Wrote a very basic sed preprocessor for "os.asm" and a bash function to
 use it (see comments at top of file about how to compile and run).

/home/arjuna/sf/htdocs/books/osdev/os.asm Sun Mar 28 21:12:07 2021 19

 But need a Forth comment syntax to make it worthwhile, and to
 get that I need PARSE to work, either in source or bytecode.
 rewrote INWORDS and FINDWORDS as source.
 These words are only really useful as a testing mechanism.
 7 june 2018
 work on this forth!! Copied a recursive FIB fibonacci word. And I
 didnt even think about them when I was coding! Rewrote "keycode" as
 source. When loading source code into a buffer, it might be good to
 get rid of extra white space... Defined char but realised that there
 is a problem with the use of char in a colon def, because the character
 code is pushed onto the stack at compile time, instead of compiling a
 literal to push onto stack at run time
 6 june 2018
 Thought that PCALL could be modified to execute opcodes
 as well. Not so easy.
 ACCEPT uses the rstack to save the buffer address, but
 2DUP makes this unnecessary. Also "accept" needs a char limit.
 In this system, it seems all defining words must be immediate???
 So we must do
 : variable create 0 , ; immediate
 : var create 0 , ; imm
 Need to fix other parse now. using CREATE in : not so good ?
 Thinking about how to implement immediate execution of opcodes
 and literal numbers (to push onto the stack). Could compile
 to a small anonymous immediate buffer and execute immediately.
 Wrote CREATE. Appears to be working. Made : COLON and ; use
 CREATE which appears to be working.
 5 june 2018
 fixed WPARSE to use the >IN stream and got : COLON to use it.
 Thought of the idea of a machine "signature". Which is
 just a list of opcodes plus mappings.
 eg 1-5,7-33,34:2101
 This means that the given machine has standard opcodes
 1-5 and 7-33 and the standard opcode 2101 which is
 mapped to 34.

 Made a byte code version of [and] for testing. Started
 CREATE. wrote WPARSE for parsing whitespace delimited
 words, skipping initial whitespace. opcodes cant
 execute immediately! nor numbers! fix? WPARSE
 advances the input stream with IN+

 dp is a pointer but HERE is a value and >IN is 2 values
 This is a bit confusing and not consistent. Could make dp
 a value, and CODE a pointer.

 Wrote a HERE>CODE word which sets the here var to the next available
 location in dictionary. It is called by CREATE and thus all defining
 words. It also writes an EXIT to the end of ANON and executes anon with
 FCALL This ensures that what is in the anonymous compile buffer ANON
 will always get executed before new code is written to the dictionary.
 We can call this a "context switch". The ANON compile buffer is where
 non-defining interactive commands are compiled to.

 4 june 2018
 Wrote a whitespace word WSPACE that returns a
 flag indicating if a char is tab=9 cr=13 space=32 or 0 etc
 This can be used in WPARSE

 Wrote LOAD which just loads the first block. A better LOAD
 would be : load 2* block1 + 2 first read first 1 K source ;
 which should load any block number eg 3 load. But we should
 also implement block & buffer.

 And started to move code into that source code block from lib.p
 rewrote >IN and IN0 so that they would use a length
 variable for input streams. Realised that SOURCE
 and IN, are different, because SOURCE establishes a new
 input stream. We dont seem to have to save the current one

 because, by the time it executes the current stream has been
 compiled... but, if we execute SOURCE immediately then we
 may get serious problems.

 3 june 2018
 Made an word IMM which sets the last word in the dictionary to
 immediate. Thinking about the exec function which executes bytecode.
 should this be able to call itself? I cant think of any analogy in a
 real machine, so I dont think so. Could be good to have a word which
 pushes the address of the opcode table onto the stack to allow
 manipulation of opcodes from within forth

 2 june 2018
 Changed LAST to be a pointer. Made a STATE variable
 Put state test into ITEM, WORD.
 But [and] words must be immediate themselves! or they dont work.

 Made the READ opcode sort of working (up to sector 18 ?) but
 need to grapple with the idea of emulated disk geometries
 and convert sector number to head+cylinder+sector number etc
 Want to make this opaque, so that the opcode handles this
 mess and the code can just treat the disk as an enormous
 array of sectors/blocks.

 After that can code buffer and block words. Maybe use last byte
 of block to store "update" bit and block number. This info
 is used by buffer and block words to determine if a read and/or
 write to disk is necessary. Will just have one source buffer
 initially for simplicity.

 Think I am close to achieving a robust, compact, and powerful
 system. Once LOAD/BUFFER/BLOCK are working well, we can
 rewrite many words as source code, thus reducing the core even
 further. Still need to fix DO and LOOP
 And write VAR/VARIABLE, CON/CONSTANT etc. Also could try to wrap core
 and source blocks in a super basic fat12 file system so
 that source code can be edited on another operating system?
 But even FAT12 looks complicated!

 29 may 2018
 writing out some standard forth words in %if0 block
 Will need to preprocess %if0 block below to put "db ’ " etc
 in front of every line of some forth source. squareroot word
 28 may 2018
 thinking about CREATE and DOES>. realised that the implementation
 of these words is not that difficult. DOES> needs to compile an
 FCALL in new defined words to the code immediately after it, as well as
 an EXIT for the defining word. Probably will do this by jumping over
 parameter field.
 23 may 2018
 Made EKEY work on x86 architecture. Made a LOOP immediate word.
 but its not like the standard forth LOOP at the moment.
 15 May 2018
 Finally got a : compiler working, so new words can be added
 to the dictionary. Wrote inputcompile (IN,) to compile
 the input buffer to the HERE pointer.
 Made a basic foreground
 colour changer just for fun FG opcode and a video mode changer VID
 for colour vga style monitors
 11 May 2018
 separated this forth-like system into a new file. Up until
 now, have been developing as part of the osdev booklet.
 10 june 2017
 made a return stack with es:di and made fcall.x and exit.x
 use the return stack, apparently successfully which allows
 nested procedures.

 %endif ; }docs

/home/arjuna/sf/htdocs/books/osdev/os.asm Sun Mar 28 21:12:07 2021 20

 BITS 16
 [ORG 0]

 jmp 07C0h:bootload ; Goto segment 07C0
 db ’pi:’
 dw 31415 ; magic number
 drive: db 0 ; a variable to hold boot drive number
 db ’boot:now’
 bootload:
 mov ax, cs ; the code segment is already correct (?!)
 mov ds, ax ; set up data and extended segments
 mov es, ax
 mov [drive], dl ; save the boot drive number
 mov ax, 07C0h ; Set up 4K stack space after this bootloader
 add ax, 288 ; (4096 + 512) / 16 bytes per paragraph
 mov ss, ax ; with a 4K gap between stack and code
 mov sp, 4096

 ; save the DL register or else dont modify it
 ; it contains the number of the boot medium (hard disk,
 ; usb memory stick etc)
 ; The ’floppy’ Drive is NOT necesarily 0!!!

 reset: ; Reset the virtual floppy drive (usb)
 mov ax, 0 ;
 mov dl, [drive] ; the boot drive number (eg for usb 128)
 int 13h ;
 jc reset ; ERROR => reset again
 readdisk:
 mov ax, 1000h ; ES:BX = 1000:0000
 mov es, ax ; es:bx determines where data loaded to
 mov bx, 0 ;
 mov ah, 2 ; Load disk data to ES:BX
 ;mov al, 8 ; Load 8 sectors 512 bytes * 8 == 4K
 mov al, 16 ; Load 16 sectors 512 bytes * 16 == 8K
 mov ch, 0 ; Cylinder=0
 mov cl, 2 ; start sector=2 (sector 1 is the boot sector)
 mov dh, 0 ; Head=0
 mov dl, [drive] ;
 int 13h ; Read!
 jc readdisk ; ERROR => Try again or exit

 jmp 1000h:0000 ; Jump to the loaded code

 times 510-($-$$) db 0 ; pad out the boot sector
 ; (512 bytes)
 dw 0AA55h ; end with standard boot signature

 ; ****
 ; this below is the magic line to make the new memory offsets
 ; work. Or compile the 2 files separately
 ; https://forum.nasm.us/index.php?topic=2160.0

 section stage2 vstart=0

 jmp start

 ; aliases for each bytecode, these aliases need to be in the
 ; same order as the pointer table below
 ; The nasm code below gives values of 1,2,3,4,5 etc to each
 ; bytecode alias. A new opcode can be inserted without having
 ; to update all the following opcodes.

 DUP equ 1
 DROP equ DUP+1
 SWAP equ DROP+1
 OVER equ SWAP+1
 ROT equ OVER+1
 TWODUP equ ROT+1

 TWODROP equ TWODUP+1
 FLAGS equ TWODROP+1
 DEPTH equ FLAGS+1
 RDEPTH equ DEPTH+1
 RON equ RDEPTH+1
 ROFF equ RON+1
 RFETCH equ ROFF+1
 TWORON equ RFETCH+1
 TWOROFF equ TWORON+1
 STORE equ TWOROFF+1
 STOREPLUS equ STORE+1
 FETCH equ STOREPLUS+1
 FETCHPLUS equ FETCH+1
 CSTORE equ FETCHPLUS+1
 CSTOREPLUS equ CSTORE+1
 CFETCH equ CSTOREPLUS+1
 CFETCHPLUS equ CFETCH+1
 COUNT equ CFETCHPLUS ; count is an alias for c@+
 ZEROEQUALS equ CFETCHPLUS+1
 EQUALS equ ZEROEQUALS+1
 NOTEQUALS equ EQUALS+1
 LESSTHAN equ NOTEQUALS+1
 ULESSTHAN equ LESSTHAN+1
 LIT equ ULESSTHAN+1
 LITW equ LIT+1
 EMIT equ LITW+1
 AKEY equ EMIT+1
 KEY equ AKEY+1
 EKEY equ KEY+1
 GETXY equ EKEY+1
 ATXY equ GETXY+1
 PLUS equ ATXY+1
 MINUS equ PLUS+1
 INCR equ MINUS+1
 DECR equ INCR+1
 NEGATE equ DECR+1
 DPLUS equ NEGATE+1
 LOGOR equ DPLUS+1 ; logical or
 LOGXOR equ LOGOR+1
 LOGAND equ LOGXOR+1
 SCALE equ LOGAND+1
 DIVMOD equ SCALE+1
 UDIVMOD equ DIVMOD+1
 UMIXDIVMOD equ UDIVMOD+1
 TIMESTWO equ UMIXDIVMOD+1
 MULT equ TIMESTWO+1
 UMULT equ MULT+1
 UMIXMULT equ UMULT+1
 RPICK equ UMIXMULT+1
 FCALL equ RPICK+1
 PCALL equ FCALL+1
 EXIT equ PCALL+1
 LJUMP equ EXIT+1
 JUMP equ LJUMP+1
 JUMPZ equ JUMP+1
 JUMPF equ JUMPZ ; jumpf (false) is an aliase for jumpz
 JUMPNZ equ JUMPZ+1
 JUMPT equ JUMPNZ ; jump-true alias for jump-not-zero
 RLOOP equ JUMPNZ+1
 DIVTWO equ RLOOP+1
 READ equ DIVTWO+1 ; loads sectors from disk
 WRITE equ READ+1 ; writes sectors to disk (usb etc)
 FG equ WRITE+1 ; foreground colour for text and pixels
 BG equ FG+1 ; background colour
 CURSOR equ BG+1 ; set the screen cursor shape (0=hidden)
 CLS equ CURSOR+1 ; clear screen
 VID equ CLS+1 ; video mode
 ; changed PIX to PLOT
 PLOT equ VID+1 ; plot one pixel on screen at xy, with colour FG

/home/arjuna/sf/htdocs/books/osdev/os.asm Sun Mar 28 21:12:07 2021 21

 GLYPH equ PLOT+1 ; display glyph on screen
 RTC equ GLYPH+1 ; real time clock
 CLOCK equ RTC+1 ; number of clock ticks since midnight
 NOOP equ CLOCK+1 ; no operation & end marker

 ;*** control bits and mask
 IMMEDIATE equ 0b10000000
 MASK equ 0b00011111

 ; Machine signature goes here
 ; machine name: eg x86.v1 opcodes and mappings
 ; the machine name can be used to install or compile new
 ; opcodes for this particular architecture
 ; but should this be an opcode or a forth word?
 machine.doc:
 ; db ’ allows access to the machine name, and signature ’
 ; dw $-machine.doc
 machine:
 dw 0
 db ’machine’, 7
 machine.p:
 db LITW
 dw machine.name
 db EXIT
 machine.name:
 ; the name of the machine, including on what chip it is
 ; implemented and a mnemonic about how it is implemented
 ; maybe include compile date in this machine name.
 db machine.sig-machine.name-1, ’4th.x86.topdx’
 ; maybe a machine description here
 ; the machine signature which is like an opcode map
 machine.sig:
 db 4, ’1-55’

 optable.doc:
 ; db ’ allows access to the machine name, and signature ’
 ; dw $-machine.doc
 optable:
 dw machine.p
 db ’optable’, 7
 optable.p:
 db LITW
 dw op.table
 db EXIT
 ; a table of code pointers. The pointers have the
 ; same offset in the table as the value of the opcode
 ; Zero is the false flag in Forth, so it is handy not to
 ; have any opcode defined for forth
 op.table:
 dw 0, dup.x, drop.x, swap.x, over.x, rot.x
 dw twodup.x, twodrop.x
 ; db twoswap.x
 dw flags.x, depth.x, rdepth.x
 dw ron.x, roff.x, rfetch.x, tworon.x, tworoff.x
 dw store.x, storeplus.x, fetch.x, fetchplus.x
 dw cstore.x, cstoreplus.x
 dw cfetch.x, cfetchplus.x
 dw zeroequals.x, equals.x, notequals.x,
 dw lessthan.x, ulessthan.x, lit.x, litw.x
 dw emit.x, akey.x, key.x, ekey.x, getxy.x, atxy.x
 dw plus.x, minus.x, incr.x, decr.x, neg.x
 dw dplus.x
 dw logor.x, logxor.x, logand.x
 dw scale.x, divmod.x, udivmod.x, umixdivmod.x, timestwo.x
 dw mult.x, umult.x, umixmult.x
 dw rpick.x, fcall.x, pcall.x, exit.x
 dw ljump.x, jump.x, jumpz.x, jumpnz.x, rloop.x
 dw divtwo.x
 dw read.x, write.x

 dw fg.x, bg.x, cls.x, cursor.x, vid.x, plot.x
 dw glyph.x
 dw rtc.x, clock.x
 ; could put just-in-time opcodes here.
 ; I think zero is a better teminator no? Yes because
 ; -1 is a valid address although unlikely address!!!
 dw noop.x, -1, 0, 0, 0, 0
 ; fill the table with zeros, so we can add more
 ; in code...

 ; this is the function which executes the byte codes
 ; takes a pointer to the code. Jumps are relative to the first
 ; byte of the jump instruction. This is not an opcode because
 ; it represents the machine itself...
 exec:
 dw optable.p
 db ’exec’, 4
 exec.x:
 ; get exec.x return address out of the way.
 ; Actually exec.x never returns! (since SHELL is an infinite loop)
 pop word [returnexec] ; save return ip
 pop si ; get pointer to code
 exec.nextopcode:
 ; stack underflow tests. But this magic number should
 ; be an "equ". It should be 4096 but something is going on
 ; comment out these 2 lines for more speed
 cmp sp, 4098
 ja .underflow
 .loadopcode:
 xor ax, ax ; set ax := 0
 lodsb ; al := [si]++
 cmp al, 0 ; zero marks end of code
 je .exit

 .opcode:
 mov bx, ax ; get opcode (1...nop etc) into bx
 shl bx, 1 ; double bx because its a word pointer

 ; each opcode jumps back to exec.nextopcode. This improves speed
 ; compared to doing call/ret.
 ; Can hold top of stack in dx "sub dx, bx " etc
 jmp [op.table+bx] ; use opcode as offset into opcode table

 ; check for stack underflow here ???
 ; Actually this is never executed because each opcode
 ; jumps straight back to exec.nextopcode: directly
 jmp exec.nextopcode
 .exit:
 ;This never exits. shell is infinite loop, but it could exit...
 push word [returnexec] ; restore fn return ip
 ret
 .underflow:
 mov sp, 4096
 mov al, ’S’
 mov ah, 0x0E
 int 10H
 mov al, ’!’
 mov ah, 0x0E
 int 10H
 mov ah, 0 ; wait for keypress bios function
 int 16h ; ah := asci code and al := scan code
 jmp .loadopcode

 returnexec dw 0

 plus.doc:
 ; db ’add the top 2 elements of the stack.’
 ; db ’ (n1 n2 -- n1+n2) ’
 ; db ’ This opcode is agnostic about whether the two 16 bit ’

/home/arjuna/sf/htdocs/books/osdev/os.asm Sun Mar 28 21:12:07 2021 22

 ; db ’ numbers are signed or unsigned. The flags opcode can be ’
 ; db ’ checked to see if there is an overflow or carry. ’
 ; dw $-plus.doc
 plus:
 dw exec.x
 db ’+’, 1
 plus.x:
 pop bx
 add dx, bx
 jmp exec.nextopcode

 ; better to use add with carry on 16bits
 ; and add with overflow. Then we can implement dplus easily
 dplus.doc:
 ; db ’add the 2 double numbers ’
 ; db ’ (d D -- d+D) ’
 ; db ’ This opcode is agnostic about whether the two 16 bit ’
 ; db ’ numbers are signed or unsigned. The flags opcode can be ’
 ; db ’ checked to see if there is an overflow or carry. ’
 ; dw $-dplus.doc
 dplus:
 dw plus.x
 db ’d+’, 2
 dplus.x:
 ; TOS (dx) has high word of first double
 mov ax, dx
 shl eax, 16
 pop ax ; lower word here
 pop dx
 shl edx, 16
 pop dx
 add edx, eax
 push dx ; lsw become NOS
 shr edx, 16 ; msw becomes TOS (dx)

 ; a stack method to convert singles to doubles
 ; push word [wHigh]
 ; push word [wLow]
 ; pop dword [dwResult]
 jmp exec.nextopcode

 minus.doc:
 ; db ’subtract the top element of stack from next top’
 ; db ’ (n1 n2 -- n1-n2) ’
 ; dw $-minus.doc
 minus:
 dw dplus.x
 db ’-’, 1
 minus.x:
 pop ax
 sub ax, dx
 mov dx, ax ; tos=dx
 jmp exec.nextopcode

 incr.doc:
 ; db ’ (n -- n+1)
 ; db ’Increment the top element of the data
 ; db ’stack by one. ’
 ; dw $-incr.doc
 incr:
 dw minus.x
 db ’1+’, 2
 incr.x:
 inc dx
 jmp exec.nextopcode

 decr.doc:
 ; db ’ (n -- n-1)
 ; db ’Decrement top element of the data stack by one. ’

 ; dw $-decr.doc
 decr:
 dw incr.x
 db ’1-’, 2
 decr.x:
 dec dx
 jmp exec.nextopcode

 ; Called "negate" in standard forths. Called "minus" in older
 ; forths (figforth?).
 neg.doc:
 ; db ’ (n -- -n)
 ; db ’Negates the top item of the stack’
 ; dw $-neg.doc
 neg:
 dw decr.x
 db ’neg’, 3
 neg.x:
 neg dx
 jmp exec.nextopcode

 logor.doc:
 ; db ’ (n1 n2 -- n1 V n2)
 ; db ’the logical OR of n1 and n2’
 ; dw $-logor.doc
 logor:
 dw neg.x
 db ’or’, 2
 logor.x:
 pop ax
 or dx, ax
 jmp exec.nextopcode

 logxor.doc:
 ; db ’ (n1 n2 -- n1 V n2)
 ; db ’the logical or of n1 and n2’
 ; dw $-logxor.doc
 logxor:
 dw logor.x
 db ’xor’, 3
 logxor.x:
 pop ax
 xor dx, ax ; top of stack == dx
 jmp exec.nextopcode

 logand.doc:
 ; db ’ (n1 n2 -- n1 && n2)
 ; db ’the logical and of n1 and n2’
 ; dw $-logand.doc
 logand:
 dw logxor.x
 db ’and’, 3
 logand.x:
 pop ax
 and dx, ax
 jmp exec.nextopcode

 divtwo.doc:
 ; db ’(n1 - n1/2) ’
 ; db ’ divide n1 by 2 ’
 ; dw $-divtwo.doc
 divtwo:
 dw logand.x
 db ’2/’, 2
 divtwo.x:
 shr dx, 1 ; do dx := (dx+1)/2 /tos=dx
 jmp exec.nextopcode

 ; this is unsigned division, which is not usually what we want

/home/arjuna/sf/htdocs/books/osdev/os.asm Sun Mar 28 21:12:07 2021 23

 udivmod.doc:
 ; db ’(n1 n2 - remainder quotient) ’
 ; db ’ divide n1 by n2 and provide remainder and quotient. ’
 ; db ’ n2 is the top item on the stack ’
 ; dw $-divmod.doc
 udivmod:
 dw divtwo.x
 db ’u/mod’, 5
 udivmod.x:
 ; maybe could optimise by doing div dx ??
 mov bx, dx ; divisor is top of stack. tos=dx,
 xor dx, dx ; set dx := 0
 pop ax ; dividend is next element
 div bx ; does dx:ax / bx remainder->dx; quotient->ax
 push dx ; put remainder on stack
 mov dx, ax ; put quotient on top of stack
 jmp exec.nextopcode

 ; this is signed division
 divmod.doc:
 ; db ’(n1 n2 - remainder quotient) ’
 ; db ’ divide n1 by n2 and leave remainder and quotient. ’
 ; dw $-divmod.doc
 divmod:
 dw udivmod.x
 db ’/mod’, 4
 divmod.x:
 ; maybe could optimise by doing div dx ??
 mov bx, dx ; divisor is top of stack. tos=dx,
 xor dx, dx ; set dx := 0
 pop ax ; dividend is next element
 cwd ; sign extend ax -> dx:ax
 idiv bx ; does dx:ax / bx remainder->dx; quotient->ax
 push dx ; put remainder on stack
 mov dx, ax ; put quotient on top of stack
 jmp exec.nextopcode

 scale.doc:
 ; db ’(n1 n2 n3 - n1 M* n2 / n3) ’
 ; db ’ do n1*n2 (2 cell result) and divide by n3 (1 cell result) ’
 ; dw $-scale.doc
 scale:
 dw divmod.x
 db ’*/’, 2
 scale.x:
 mov bx, dx ; save t-o-s (n3) for later
 pop ax ; n2
 pop dx ; n1
 imul dx ; do dx:ax := ax*dx
 idiv bx ; does dx:ax / bx remainder->dx; quotient->ax
 mov dx, ax ; put quotient on top of stack
 jmp exec.nextopcode

 ; unsigned. Is this working? seems to be.
 umixdivmod.doc:
 ; db ’(ud n - rem quo) ’
 ; db ’ divide unsigned double by n and leave remainder and quotient. ’
 umixdivmod:
 dw scale.x
 db ’um/mod’, 6
 umixdivmod.x:
 xor ebx, ebx ; ebx=0
 mov bx, dx ; divisor is top of stack. tos=dx,
 ;pop dx ; high cell of dividend is higher on stack
 xor edx, edx ; set dx := 0
 xor eax, eax ;
 pop ax
 shl eax, 16 ; mov high cell of dividend
 ; or try edx:eax

 pop ax ; low cell of dividend
 div ebx ; does edx:eax ? / bx remainder->edx; quotient->eax
 push dx ; put remainder on stack
 mov dx, ax ; put quotient on top of stack
 jmp exec.nextopcode

 timestwo.doc:
 ; db ’(n1 -- n1*2) ’
 ; db ’ double n1. This basically performs a ’
 ; db ’ left shift on the bits in n1 ’
 ; dw $-timestwo.doc
 timestwo:
 dw umixdivmod.x
 db ’2*’, 2
 timestwo.x:
 shl dx, 1 ; tos=dx
 jmp exec.nextopcode

 mult.doc:
 ; db ’(n1 n2 -- n1*n2) ’
 ; db ’ signed multiplication ’
 ; dw $-mult.doc
 mult:
 dw timestwo.x
 db ’*’, 1
 mult.x:
 pop ax
 imul dx ; do dx:ax := ax*dx
 ; need to set some overflow flag here if dx<>0
 mov dx, ax ; result in top of stack, tos=dx
 jmp exec.nextopcode

 umult.doc:
 ; db ’(n1 n2 -- n1*n2) ’
 ; db ’ unsigned multiplication ’
 ; dw $-umult.doc
 umult:
 dw mult.x
 db ’u*’, 2
 umult.x:
 ;mov bx, dx ; tos=dx
 ; we dont use the result in dx here so could not do this
 ;xor dx, dx ; set dx := 0
 pop ax
 mul dx ; do dx:ax := ax*dx
 mov dx, ax ; result in top of stack, tos=dx
 jmp exec.nextopcode

 ; The high order 16 bits of a double number is on top of the
 ; stack.
 umixmult.doc:
 ; db ’(a b -- d / do a*b and leave double result d, unsiged) ’
 ; db ’ unsigned mixed multiplication ’
 umixmult:
 dw umult.x
 db ’um*’, 3
 umixmult.x:
 pop ax ; next-on-stack into AX
 mul dx ; do dx:ax := ax*dx
 push ax ; result in top 2 stack items, high item is TOS
 jmp exec.nextopcode

 rpick.doc:
 ; dw $-fcall.doc
 rpick:
 dw umixmult.x
 db ’rpick’, 5
 rpick.x:
 ; get nth item from return-stack onto the data-stack

/home/arjuna/sf/htdocs/books/osdev/os.asm Sun Mar 28 21:12:07 2021 24

 ; so 1 rpick gets the top item on the r-stack
 mov bx, dx ; bx:=dx*2
 add bx, dx
 neg bx ; negate bx because rstack grows to high memory
 ; (unlike data stack)
 mov dx, [es:di+bx] ;
 jmp exec.nextopcode

 fcall.doc:
 ; db ’Call a virtual proceedure on the bytecode stack machine’
 ; db ’The current code pointer (in the SI register)’
 ; db ’is saved - pushed onto the return stack [es:di] and the address
 ; db ’of the virtual proc to execute is loaded into SI. ’
 ; dw $-fcall.doc
 fcall:
 dw rpick.x
 db ’fcall’, 5
 fcall.x:
 lodsw
 mov [es:di], si
 add di, 2
 mov si, ax ; adjust the si code pointer
 jmp exec.nextopcode

 ; We can also write "execute" as well which will work
 ; with opcodes by using a temporary compile buffer
 ; in the dictionary or just doing pcall. see word "exec"

 pcall.doc:
 ; db ’ (xt --) ’
 ; db ’ Call a procedure using the top element on ’
 ; db ’ the data stack as the execution address. This ’
 ; db ’ allows the implementation of function pointers’
 ; db ’ In standard forths this is called "execute". But ’
 ; standard forth does not distinguish between opcodes and procs
 ; so execute will do both.
 ; dw $-pcall.doc
 pcall:
 dw fcall.x
 db ’pcall’, 5 ; or call it exec/ex/execute
 pcall.x:
 mov [es:di], si ; save ip to return stack
 add di, 2
 mov si, dx ; get proc exec address from stack
 pop dx
 jmp exec.nextopcode

 exit.doc:
 ; db ’exit a virtual procedure by restoring si ’
 ; db ’code pointer’
 ; dw $-exit.doc
 exit:
 dw pcall.x
 db ’exit’, 4
 exit.x:
 sub di, 2
 mov si, [es:di] ; restore si from rstack
 jmp exec.nextopcode

 dup.doc:
 ; db ’Duplicates the top item on the stack.’
 ; dw $-dup.doc
 dup:
 dw exit.x ; link to previous word
 db ’dup’, 3 ; strings are ’counted’
 dup.x:
 push dx ; dup TOS
 jmp exec.nextopcode

 drop.doc:
 ; db ’removes the top item on the stack.’
 ; dw $-drop.doc
 drop:
 dw dup.x ; link to previous word
 db ’drop’, 4 ; name with reverse count
 drop.x:
 pop dx ; remove top element of stack
 jmp exec.nextopcode

 twodrop.doc:
 ; db ’removes the top item on the stack.’
 ; dw $-drop.doc
 twodrop:
 dw drop.x ; link to previous word
 db ’2drop’, 5 ; name with reverse count
 twodrop.x:
 pop dx ; remove top 2 elements of stack
 pop dx
 jmp exec.nextopcode

 swap.doc:
 ; db ’swaps the top 2 items on the stack.’
 ; dw $-swap.doc
 swap:
 dw twodrop.x ; link to previous word
 db ’swap’, 4
 swap.x:
 pop ax ; get top stack item
 push dx ; put them back on in reverse order
 mov dx, ax ; tos=dx
 jmp exec.nextopcode

 ; opcode version of 2swap
 twoswap.doc:
 ; db ’swaps the top 2 items on the stack with the next 2’
 ; (a b c d -- c d a b)
 twoswap:
 dw swap.x ; link to previous word
 db ’2Swap’, 5
 twoswap.x:
 pop ax ; 2nd-on-stack
 pop bx ; 3rd-on-stack
 pop cx ; 4th-on-stack
 push ax
 push dx ;
 push cx
 mov dx, bx ; tos := 3rd-onstack
 jmp exec.nextopcode

 over.doc:
 ; db ’ (n1 n2 -- n1 n2 n1) ’
 ; db ’ Puts a copy of 2nd stack item on top of stack. ’
 ; dw $-over.doc
 over:
 dw twoswap.x ; link to previous word
 db ’over’, 4
 over.x:
 pop ax ; get NOS (next-on-stack) stack item
 push ax ;
 push dx ;
 mov dx, ax ; add copy of 2nd item on top of stack
 jmp exec.nextopcode

 ; trying to speed the machine up with these opcodes
 rot.doc:
 ; db ’ (a b c -- b c a) ’
 rot:
 dw over.x ; link to previous word

/home/arjuna/sf/htdocs/books/osdev/os.asm Sun Mar 28 21:12:07 2021 25

 db ’rot’, 3
 rot.x:
 pop ax ; get n-o-s (b)
 pop bx ; get nn-o-s (a)
 push ax ; b
 push dx ; c
 mov dx, bx ; a
 jmp exec.nextopcode

 twodup.doc:
 ; db ’ (n1 n2 -- n1 n2 n1 n2) ’
 ; db ’ copies 2 stack items onto stack ’
 ; dw $-twodup.doc
 twodup:
 dw rot.x
 db ’2dup’, 4
 twodup.x:
 pop ax ; get NOS next stack item
 push ax ;
 push dx ;
 push ax ; n1 n2 n1 n2
 jmp exec.nextopcode

 flags.doc:
 ; db ’ (-- n) ’
 ; db ’ push flag register onto the stack ’
 ; db ’ execution flags such as carry overflow negate etc ’
 ; db ’ are pushed onto the stack ’
 ; dw $-flags.doc
 flags:
 dw twodup.x
 db ’flags’, 5
 flags.x:
 push dx ; save NOS on stack
 pushf
 pop dx ; get flags into TOS (dx)
 jmp exec.nextopcode

 depth.doc:
 ; db ’ (-- n) ’
 ; db ’ Puts on the stack the number of stack items ’
 ; db ’ before this word was executed ’
 ; dw $-depth.doc
 depth:
 dw flags.x
 db ’depth’, 5
 depth.x:
 push dx
 mov bx, sp
 mov dx, 4096 ; 4K stack (but could change!)
 sub dx, bx ;
 shr dx, 1 ; div by 2 (2 byte stack cell)
 ;causing problems ???
 ;dec ax ; the exec.x call doesnt count
 jmp exec.nextopcode

 rdepth.doc:
 ; db ’ (-- n) ’
 ; db ’ Puts on the stack the number of stack items ’
 ; db ’ on the return stack before this word ’
 ; db ’ was executed ’
 ; dw $-rdepth.doc
 rdepth:
 dw depth.x
 db ’rdepth’, 6
 rdepth.x:
 push dx
 mov dx, di
 shr dx, 1

 jmp exec.nextopcode

 ron.doc:
 ; db ’(S: n --)(R: -- n) ’
 ; db ’ put the top item of the data stack onto the return stack.’
 ; dw $-ron.doc
 ron:
 dw rdepth.x
 db ’>r’, 2
 ron.x:
 mov ax, dx ; value to store at address (tos=dx)
 stosw ; [es:di] := ax, di+2
 pop dx
 jmp exec.nextopcode

 roff.doc:
 ; db ’(S: -- n)(R: n --) ’
 ; db ’ put the top item of the return stack onto the data stack.’
 ; dw $-roff.doc
 roff:
 dw ron.x
 db ’r>’, 2
 roff.x:
 ; These underflow checks may not be necessary for working
 ; code, but should make debugging easier.
 cmp di, 0
 je .underflow
 push dx ; push new nos on stack
 sub di, 2 ;
 mov dx, [es:di] ; get top item off return stack
 jmp exec.nextopcode
 .underflow:
 mov al, ’R’
 mov ah, 0x0E
 int 10H
 mov al, ’!’
 mov ah, 0x0E
 int 10H
 mov ah, 0 ; wait for keypress bios function
 int 16h ; ah := asci code and al := scan code
 jmp exec.nextopcode

 rfetch.doc:
 ; db ’(S: -- n)(R: n -- n) ’
 ; db ’ fetch top rstack item onto data stack ’
 ; dw $-rfetch.doc
 rfetch:
 dw roff.x
 db ’r@’, 2
 rfetch.x:
 push dx ; push new nos on stack
 ;sub di, 2 ;
 mov dx, [es:di-2] ; get top item off return stack
 jmp exec.nextopcode

 ; this can be an opcode
 tworon.doc:
 ; db ’(S: n --)(R: -- n) ’
 ; db ’ put the top item of the data stack onto the return stack.’
 ; dw $-ron.doc
 tworon:
 dw rfetch.x
 db ’2>r’, 3
 tworon.x:
 mov ax, dx ; value to store at address (tos=dx)
 stosw ; [es:di] := ax, di+2
 pop dx
 mov ax, dx ; value to store at address (tos=dx)
 stosw ; [es:di] := ax, di+2

/home/arjuna/sf/htdocs/books/osdev/os.asm Sun Mar 28 21:12:07 2021 26

 pop dx
 jmp exec.nextopcode

 tworoff.doc:
 tworoff:
 dw tworon.x
 db ’2r>’, 3
 tworoff.x:
 push dx ; push new nos on stack
 sub di, 2 ;
 mov dx, [es:di] ; get top item off return stack
 push dx ; push new nos on stack
 sub di, 2 ;
 mov dx, [es:di] ; get top item off return stack
 jmp exec.nextopcode

 store.doc:
 ; db ’(w adr --) ’
 ; db ’ place 2 byte value w at address "adr" ’
 ; dw $-store.doc
 store:
 dw tworoff.x
 db ’!’, 1
 store.x:
 mov bx, dx ; pointer to address
 pop ax ; value to store at address
 mov [bx], ax ; 2 byte is stored
 pop dx
 jmp exec.nextopcode

 storeplus.doc:
 ; db ’(w adr -- adr+2) ’
 ; dw $-storeplus.doc
 storeplus:
 dw store.x ; link to previous word
 db ’!+’, 2
 storeplus.x:
 mov bx, dx ; pointer to address
 pop ax ; value to store at address
 mov [bx], ax ; 2 byte value is stored
 inc dx ; advance address and put on stack
 inc dx ; advance address and put on stack
 jmp exec.nextopcode

 fetch.doc:
 ; db ’(adr -- n) ’
 ; db ’ Replace the top element of the stack with the ’
 ; db ’ value of the 16bites at the given memory address ’
 ; dw $-fetch.doc
 fetch:
 dw storeplus.x ; link to previous word
 db ’@’, 1
 fetch.x:
 mov bx, dx ; address in tos
 mov dx, word [bx]
 jmp exec.nextopcode

 fetchplus.doc:
 ; db ’(adr -- adr+2 n) ’
 ; db ’ Replace the top element of the stack with the ’
 ; db ’ value of the 16bites at the given memory address ’
 ; db ’ and increment the address by 2 bytes. ’
 ; dw $-fetchplus.doc
 fetchplus:
 dw fetch.x ; link to previous word
 db ’@+’, 2
 fetchplus.x:
 mov bx, dx
 mov dx, word [bx] ; value on top of stack

 add bx, 2 ; increment address by 1 word (2 bytes)
 push bx ; save address on stack
 jmp exec.nextopcode

 cstore.doc:
 ; db ’(n adr --) store the byte value n at address adr.’
 ; db ’ eg: 10 myvar ! ’
 ; db ’ puts the value 10 at the address specified by "myvar" ’
 ; db ’ The address is the top value on the stack. ’
 ; dw $-cstore.doc
 cstore:
 dw fetchplus.x ; link to previous word
 db ’c!’, 2
 cstore.x:
 mov bx, dx ; pointer to address
 pop ax ; value to store at address
 mov [bx], al ; only the low value byte is stored
 pop dx
 jmp exec.nextopcode

 cstoreplus.doc:
 ; db ’(n adr -- adr+1) store the byte value n at address adr.’
 ; db ’ And increment the address ’
 ; dw $-cstoreplus.doc
 cstoreplus:
 dw cstore.x ; link to previous word
 db ’c!+’, 3
 cstoreplus.x:
 mov bx, dx ; pointer to address
 pop ax ; value to store at address
 mov [bx], al ; only the low value byte is stored
 inc dx ; advance address and put on stack (tos=dx)
 jmp exec.nextopcode

 cfetch.doc:
 ; db ’(adr -- n) Replace the top element of the stack with the value ’
 ; db ’ of the byte at the given memory address.’
 ; db ’ eg: myvar @ . ’
 ; db ’ displays the value at the address given by "myvar" ’
 ; dw $-cfetch.doc
 cfetch:
 dw cstoreplus.x ; link to previous word
 db ’c@’, 2
 cfetch.x:
 mov bx, dx ; tos=dx
 xor dx, dx ; set dx := 0
 mov al, byte [bx]
 cbw ; convert signed byte to signed word ax
 mov dx, ax ; put literal value on stack (tos=dx)
 jmp exec.nextopcode

 ; need to sign extend !!
 cfetchplus.doc:
 ; db ’(adr -- adr+1 n) ’
 ; db ’ Replace the top element of the stack with the value ’
 ; db ’ of the byte at the given memory address and increment the ’
 ; db ’ address . This is exactly the same as "count"’
 ; dw $-fetchplus.doc
 cfetchplus:
 dw cfetch.x ; link to previous word
 db ’c@+’, 3
 cfetchplus.x:
 mov bx, dx
 xor dx, dx ; set dx := 0
 mov al, byte [bx]
 cbw ; convert signed byte to signed word ax
 mov dx, ax ; put literal value on stack (tos=dx)
 inc bx ; increment address by 1
 push bx ; save new address on stack

/home/arjuna/sf/htdocs/books/osdev/os.asm Sun Mar 28 21:12:07 2021 27

 jmp exec.nextopcode

 zeroequals.doc:
 ; db ’ (n1 n2 -- flag) ’
 ; db ’Puts -1 (true) on the stack if n1==n2 ’
 ; db ’otherwise puts zero (false) on the stack. ’
 ; dw $-equals.doc
 zeroequals:
 dw cfetchplus.x ; link to previous word
 db ’0=’, 2
 zeroequals.x:
 ; faster?
 neg dx ; ZF=1/0 for zero/non-zero, CF=not(ZF)
 sbb dx,dx ; dx = 0/-1 for CF=0/1
 inc dx ; 1 when dx was 0 at start, 0 otherwise
 jmp exec.nextopcode

 ; slower?
 cmp dx, 0 ; if tos==nos
 je .true
 .false:
 mov dx, 0
 jmp exec.nextopcode
 .true:
 mov dx, -1
 .exit:
 jmp exec.nextopcode

 equals.doc:
 ; db ’ (n1 n2 -- flag) ’
 ; db ’Puts -1 (true) on the stack if n1==n2 ’
 ; db ’otherwise puts zero (false) on the stack. ’
 ; dw $-equals.doc
 equals:
 dw zeroequals.x ; link to previous word
 db ’=’, 1
 equals.x:
 pop bx ; 2nd stack item
 cmp dx, bx ; if tos==nos
 je .true
 .false:
 mov dx, 0
 jmp exec.nextopcode
 .true:
 mov dx, -1
 .exit:
 jmp exec.nextopcode

 notequals.doc:
 ; db ’ (n1 n2 -- flag) ’
 ; db ’Puts 0 (false) on the stack if n1==n2 ’
 ; db ’otherwise puts -1 (true) on the data stack’
 ; dw $-notequals.doc
 notequals:
 dw equals.x ; link to previous word
 db ’<>’, 2
 notequals.x:
 pop bx ; 2nd stack item
 cmp dx, bx
 jne .true
 .false:
 mov dx, 0
 jmp exec.nextopcode
 .true:
 mov dx, -1
 .exit:
 jmp exec.nextopcode

 lessthan.doc:

 ; db ’ (n1 n2 -- flag) ’
 ; db ’Puts 0 (false) on the stack if n1<n2 ’
 ; db ’otherwise puts -1 (true) on the data stack’
 ; db ’this is a signed comparison’
 ; dw $-lessthan.doc
 lessthan:
 dw notequals.x
 db ’<’, 1
 lessthan.x:
 pop bx ; 2nd stack item
 cmp dx, bx
 jg .true ; jg is a signed comparison
 .false:
 mov dx, 0
 jmp exec.nextopcode
 .true:
 mov dx, -1
 .exit:
 jmp exec.nextopcode

 ulessthan.doc:
 ; db ’ (n1 n2 -- flag) ’
 ; db ’Puts true -1/1 on the stack if n1<n2 ’
 ; db ’otherwise puts false=0 on the data stack’
 ; db ’this is an unsigned comparison’
 ; dw $-ulessthan.doc
 ulessthan:
 dw lessthan.x
 db ’u<’, 2
 ulessthan.x:
 pop bx ; 2nd stack item
 cmp dx, bx
 ja .true ; jg is an unsigned comparison
 .false:
 mov dx, 0
 ;jmp .exit
 jmp exec.nextopcode
 .true:
 mov dx, -1
 .exit:
 jmp exec.nextopcode

 lit.doc:
 ; db ’Pushes an 8 bit literal value onto the stack’
 ; dw $-lit.doc
 lit:
 dw ulessthan.x ; link to previous word
 db ’lit’, 3
 lit.x:
 push dx ; current tos onto stack
 xor ax, ax ; set ax := 0
 lodsb ; al := [si]++ get literal char into AL
 cbw ; convert signed byte to signed word ax
 mov dx, ax ; put literal value on stack (tos=dx)
 jmp exec.nextopcode

 litw.doc:
 ; db ’Pushes an 16 bit literal value onto the stack’
 ; dw $-litw.doc
 litw:
 dw lit.x ; link to previous word
 db ’litw’, 4
 litw.x:
 push dx ; current tos onto stack
 lodsw ; ax := [si]++ get literal char into AX
 mov dx, ax ; put lit onto stack (tos=dx)
 jmp exec.nextopcode

 ; New version using function ah=0x09 int 0x10. This version can

/home/arjuna/sf/htdocs/books/osdev/os.asm Sun Mar 28 21:12:07 2021 28

 ; show background colours in video mode 3 (but not in graphic video
 ; modes like 16). Background colours are nice for text editors (for
 ; example to display a cursor). The disadvantage is that everything
 ; appears on one line on the screen unless explicit cr/nl 13,10
 ; characters are used.
 emit.doc:
 ; db ’removes and displays top item on stack as an ascii character.’
 ; db ’Or else moves the cursor about the screen (eg tab/ff/nl/cr/space)’
 ; db ’The character is in the low byte of the stack item...’
 ; dw $-emit.doc
 emit:
 dw litw.x
 db ’emit’, 4
 emit.x:
 mov ax, dx ; char in dl (dx is TOS) -> al
 ; if the character is printable (not cr/nl/tab/ff etc)
 ; then print it with ah=0x09, otherwise print it with
 ; ah=0x0E
 cmp al, 7
 jb .printable ; jb (jump if below) is an unsigned comparison
 cmp al, 13
 ja .printable ; ja (jump if above) is an unsigned comparison
 mov ah, 0x0E ; bios teletype function
 int 10h
 pop dx ; tos in dx
 jmp exec.nextopcode

 .printable:

 mov bl, [bg.d] ; high 4 bits are background colour
 shl bl, 4 ; put the number (0-15) in high bits
 mov dl, [fg.d] ; low 4 bits are foreground colour
 or bl, dl ;

 ;mov bl, 0x2F ; just for debug.
 ; I dont understand this page number parameter...
 mov bh, 0 ; assume we are working in the first page
 mov ah, 0x09 ; the ’function’ number for colour print
 mov cx, 1 ; print the character once
 int 10h
 ; increment the cursor position
 mov ah, 03h ; get cursor position into dx
 int 10h
 mov ah, 02h ; set cursor position function
 inc dl ; increment the column position
 int 10h

 pop dx ; tos in dx
 jmp exec.nextopcode

 ; The old version of emit using function ah=0x0E int 0x10
 ; The main disadvantage is that background colours dont seem to
 ; work with this teletype function.
 emito.doc:
 ; db ’removes and displays top item on stack as an ascii character.’
 ; db ’I suppose the character is in the low byte of the stack item...’
 ; dw $-emit.doc
 emito:
 dw litw.x
 db ’emit’, 4
 emito.x:
 mov ax, dx ; char in dl (dx is TOS) -> al
 ; these background colours arent working in qemu (?)
 mov bl, [bg.d] ; high 4 bits are background colour
 shl bl, 4 ; put the number (0-15) in high bits
 mov dl, [fg.d] ; low 4 bits are foreground colour
 or bl, dl ;
 mov ah, 0x0E ; bios teletype function
 int 10h

 pop dx ; tos in dx
 jmp exec.nextopcode

 ; This code uses function ah=0x09 instead of ah=0x0E
 ; to print a character. The cursor must also be advanced.
 ; Another option is to write directly to video memory to
 ; print characters
 %if 0
 mov bh, 0 ; assume we are working in the first page

 mov ah, 09h ; the ’function’ number for colour print
 mov cx, 1 ; print the character once
 int 10h ; do it with a bios interrupt

 mov ah, 03h ; get cursor position into dx
 int 10h
 mov ah, 02h ; set cursor position function
 inc dl ; increment the column position
 int 10h
 %endif

 ; key? can also use 16h ah=01h
 akey.doc:
 ; db ’Flag if a key is available’
 ; dw $-key.doc
 akey:
 dw emit.x ; link to prev
 db ’key?’, 4 ; reverse counted string
 akey.x:
 push dx ; make tos into nos
 mov ah, 1 ; check if key available
 int 16h ; al := ...
 jz .nokey
 mov dx, 1 ; put flag on stack
 jmp exec.nextopcode
 .nokey:
 mov dx, 0
 jmp exec.nextopcode

 ; key? can also use 16h ah=01h
 key.doc:
 ; db ’Get one keystroke from user and place on stack’
 ; db ’The key is represented as an ascii code in the low byte ’
 ; db ’of the stack item.’
 ; dw $-key.doc
 key:
 dw akey.x ; link to prev
 db ’key’, 3 ; reverse counted string
 key.x:
 push dx ; make tos into nos
 mov ah, 0 ; wait for keypress bios function
 int 16h ; ah := asci code and al := scan code
 mov ah, 0 ; set ah = 0
 mov dx, ax ; save asci code onto stack (tos=dx), high byte zero
 jmp exec.nextopcode

 ekey.doc:
 ; db ’ (-- event flag) ’
 ; db ’Get one keyboard event and place on stack’
 ; db ’This includes arrow keys etc. The flag indicates if the ’
 ; db ’code represents an extended character (eg arrow key) ’
 ; db ’or just an ordinary asci character ’
 ; dw $-ekey.doc
 ekey:
 dw key.x ; link to prev
 db ’ekey’, 4 ; reverse counted string
 ekey.x:
 push dx

/home/arjuna/sf/htdocs/books/osdev/os.asm Sun Mar 28 21:12:07 2021 29

 mov ah, 0 ; wait for keypress bios function
 int 16h ; ah := asci code and al := scan code
 cmp al, 0 ; is extended char (AL == 0) ?
 je .extended ; wait for next key if not ->
 mov ah, 0 ; set ah = 0
 push ax ; save asci code onto stack, high byte zero
 mov dx, 0 ; false flag
 jmp exec.nextopcode

 .extended:
 mov al, ah ; set ah = al
 xor ah, ah ; set high byte to zero
 push ax ; save event code onto stack, high byte zero
 mov dx, 1 ; true flag (is extended char)
 jmp exec.nextopcode

 getxy.doc:
 ; db ’ (-- x y)
 ; db ’ Return the x and y position of the cursor. ’
 ; dw $-getxy.doc
 getxy:
 dw ekey.x ; link to previous
 db ’getxy’, 5 ; reverse counted string
 getxy.x:
 ; dl=x/col dh=y/row
 push dx ; make tos into nos
 mov ah, 03h ; bios function: get cursor position into dx
 int 10h ; invoke bios
 mov bx, dx ; dl=x, dh=y
 mov dl, dh
 and dx, 0x00FF
 and bx, 0x00FF
 push bx
 jmp exec.nextopcode

 atxy.doc:
 ; db ’ (x y --)
 ; db ’ set the x and y position of the cursor. ’
 ; dw $-setxy.doc
 atxy:
 dw getxy.x
 db ’atxy’, 4
 atxy.x:
 ; dl=col dh=row
 mov dh, dl
 pop bx
 mov dl, bl
 mov ah, 02h ; bios function: set cursor position specified in dx
 int 10h ; invoke bios
 pop dx
 jmp exec.nextopcode

 ljump.doc:
 ; db ’jumps to a relative virtual instruction.’
 ; db ’ The jump is given in the next 2 bytes’
 ; dw $-ljump.doc
 ljump:
 dw atxy.x ; link to prev
 db ’ljump’, 5 ; reverse count
 ljump.x:
 xor ax, ax ; set ax := 0
 lodsw ; al := [si]; si=si+2 get relative jump target into AL
 sub si, 3 ; realign si to LJUMP instruction (target is 2 bytes)
 add si, ax ; adjust the si code pointer by offset
 jmp exec.nextopcode

 jump.doc:
 ; db ’jumps to a relative virtual instruction.’
 ; db ’ The relative jump is given in the next byte.’

 ; db ’ eg: JUMP, -2, jumps back 2 instructions in the bytecode’
 ; db ’ eg: LIT, ’*’, EMIT, JUMP, -3, ’
 ; db ’ prints a never-ending list of asterixes ’
 ; dw $-jump.doc
 jump:
 dw ljump.x ; link to prev
 db ’jump’, 4 ; reverse count
 jump.x:
 ; jumps can be handled in the exec routine
 ; handle jumps by modifying virtual ip (in this case SI)
 xor ax, ax ; set ax := 0
 lodsb ; al := [si]++ get relative jump target into AL
 cbw ; convert signed byte al to signed word ax (neg offset)
 sub si, 2 ; realign si to JUMP instruction,
 add si, ax ; adjust the si code pointer by jump offset
 ; do we need to decrement si ?? yes, more logical
 jmp exec.nextopcode

 jumpz.doc:
 ; db ’ (n --)
 ; db ’jumps to a relative virtual instruction if top ’
 ; db ’stack element is zero. The flag value is removed ’
 ; db ’from the stack
 ; db ’ The relative jump is given in the next byte.’
 ; db ’ eg: JUMPZ, -2, jumps back 2 instructions in the bytecode’
 ; db ’ eg: KEY, DUP, EMIT, LIT, ’0’, MINUS, JUMPNZ, -6 ’
 ; db ’ allows the user to type until zero is pressed. ’
 ; dw $-jump.doc
 ; handle jumps by modifying virtual ip (in this case SI)
 jumpz:
 dw jump.x ; link to prev
 db ’jumpz’, 5 ; reverse count
 jumpz.x:
 xor ax, ax ; set ax := 0
 lodsb ; al := [si]++ get relative jump target into AL
 ; check stack for zero, if not continue with next instruction
 cmp dx, 0 ; if dx != 0 continue (tos==dx)
 jne .exit
 cbw ; convert signed byte al to signed word ax (neg offset)
 sub si, 2 ; realign si to JUMP instruction,
 add si, ax ; adjust the si code pointer by jump offset
 .exit:
 pop dx
 jmp exec.nextopcode

 ; should jumps take top stack element off ? yes
 jumpnz.doc:
 ; db ’jumps to a relative virtual instruction if top stack element ’
 ; db ’ is not zero.
 ; db ’ The relative jump is given in the next byte.’
 ; db ’ eg: JUMPNZ, -2, jumps back 2 instructions in the bytecode’
 ; db ’ eg: KEY, DUP, EMIT, LIT, ’q’, MINUS, JUMPNZ, -6 ’
 ; db ’ allows the user to type until "q" is pressed. ’
 ; dw $-jumpnz.doc
 jumpnz:
 dw jumpz.x ; link to prev
 db ’jumpnz’, 6 ; reverse count
 jumpnz.x:
 ; handle jumps by modifying virtual ip (in this case SI)
 xor ax, ax ; set ax := 0
 lodsb ; al := [si]++ get relative jump target into AL
 ; check stack for zero, if so continue with next
 ; instruction (dont jump)
 cmp dx, 0 ; if bx != 0 continue
 je .exit ; the only difference with jumpz !
 cbw ; convert signed byte al to signed word ax (neg offset)
 sub si, 2 ; realign si to JUMP instruction,
 add si, ax ; adjust the si code pointer by jump offset
 .exit:

/home/arjuna/sf/htdocs/books/osdev/os.asm Sun Mar 28 21:12:07 2021 30

 pop dx
 jmp exec.nextopcode

 rloop.doc:
 ; db ’ (R: n -- n-1) ’
 ; db ’ Decrements loop counter on return stack and jumps to ’
 ; db ’ target if counter > 0 ’
 ; db ’ like the x86 loop instruction this is a pre-decrement ’
 ; db ’ so a loop counter of 2 will loop twice. The disadvantage ’
 ; db ’ is that a loop counter of 0 will loop 2^16 times. ’
 ; dw $-rloop.doc
 rloop:
 dw jumpnz.x ; link to prev
 db ’rloop’, 5 ; reverse count
 rloop.x:
 ; handle loops by modifying virtual ip (in this case SI)
 xor ax, ax ; set ax := 0
 lodsb ; al := [si]++ get relative loop target into AL
 ; check return stack for zero, if so continue with next
 ; instruction (dont jump/loop)
 mov bx, [es:di-2] ; get top return stack item into bx
 dec bx ; decrement the loop counter on the return stack
 cmp bx, 0 ; if bx != 0 continue
 mov [es:di-2], bx ; update the counter
 je .exit ; the only difference with jumpz !
 cbw ; convert signed byte al to signed word ax (neg offset)
 sub si, 2 ; realign si to JUMP instruction,
 add si, ax ; adjust the si code pointer by jump offset
 .exit:
 jmp exec.nextopcode

 ; sectors/track and sides are set by bootup code int 13h, ah=8
 ; SectorsPerTrack: dw 18 ; standard floppy config
 ; Sides: dw 2 ; floppies only have one ’platter’

 read.doc:
 ; db ’ (1st-sector n addr -- flag=T/F)
 ; db ’ reads n sectors from disk starting at sector to memory addr ’
 ; db ’ returns 0 on failure, 1 on success. ’
 ; dw $-read.doc
 read:
 dw rloop.x
 db ’read’, 4
 read.x:

 ; 1st-sect n address
 mov fs, dx ; destination memory address in this segment
 .reset: ; Reset the virtual floppy drive (usb)
 mov ax, 0 ;
 mov dl, byte [drive.d] ;boot drive number (eg for usb 128)
 int 13h ;
 jc .reset ; read error => reset again
 .read:

 ; need to save es since rstack points with it!!
 mov [saven.es], es
 mov ax, ds ; set es:=ds because we read into this segment
 mov es, ax ; es:bx determines where data loaded to

 pop gs ; how many sectors (-> AL)
 pop ax ; start sector

 ; -- thanks to mike gonta for this code
 .logical:
 ; Will there be issues with multi-track reads?
 ; Also, sectors start at one not zero !!
 ; So sector 1 is the boot sector on disk.
 ; Calculate track (cylinder), head and sector (chs) settings
 ; for the int 13h (ah=2) read disk function

 ; IN: logical sector in AX, OUT: correct registers for int 13h
 ; cl := start sector
 ; ch := track (or cylinder)
 ; dh := head (or side)
 ; dl := drive or boot device
 ; ah := 2 (Int 13h read sectors from disk function)
 ; al := how many sectors to read
 ; es:bx := destination address in memory
 ;
 ;push bx
 ;push ax
 ; ax has how many sectors to read
 mov bx, ax ; Save logical sector
 mov dx, 0
 div word [sectorspertrack.d] ; First the sector
 add dl, 01h ; Physical sectors start at 1
 mov cl, dl ; Sectors belong in CL for int 13h
 mov ax, bx

 mov dx, 0 ; Now calculate the head
 div word [sectorspertrack.d]
 mov dx, 0
 div word [sides.d]
 mov dh, dl ; Head/side
 mov ch, al ; Track
 ;pop ax
 ;pop bx
 mov dl, byte [drive.d] ; Set correct device

 mov bx, fs ; es:bx is destination address in ram for read
 mov ax, gs ; ax (al) := how many sectors to read
 mov ah, 2 ; int 13H function ah:2 "Load disk data to ES:BX"
 int 13h ; Read!
 jc .readerror ; ERROR => Try again

 ;*** restore es since rstack points with it!!
 mov es, [saven.es]
 mov dx, 1 ; return true flag for success
 jmp exec.nextopcode

 .readerror:
 ;*** restore es since rstack points with it!!
 mov es, [saven.es]
 mov dx, 0 ; return false flag for read error
 jmp exec.nextopcode

 saven.es: dw 0

 ; this has the potential to ’brick’ a computer so we need to
 ; get it right before doing it.
 write.doc:
 ; db ’ (first-sector n addr -- flag=T/F/2)
 ; db ’ write sectors to disk ’
 ; dw $-write.doc
 write:
 dw read.x
 db ’write’, 5
 write.x:

 ; to do: test, very, very, carefully
 ; 1st-sect n address
 mov fs, dx ; source memory address in this segment
 .reset: ; Reset the virtual floppy drive (usb)
 mov ax, 0 ;
 mov dl, byte [drive.d] ;boot drive number (eg for usb 128)
 int 13h ;
 jc .reset ; read error => reset again
 .testread:
 ; below is a sanity check read to make sure we are going

/home/arjuna/sf/htdocs/books/osdev/os.asm Sun Mar 28 21:12:07 2021 31

 ; to write to the correct disk.
 ; cl := (1) start sector, in this case boot sector
 ; ch := (0) track (or cylinder) number
 ; dh := (0) head (or side)
 ; dl := drive or boot device 0-3=diskette; 80H-81H=hard disk
 ; ah := 3 (Int 13h write sectors to disk function)
 ; al := (1) how many sectors to read
 ; es:bx := where to read data. In this case a testbuffer
 ; which is ’first’ + 512 bytes

 mov [saven.es], es
 mov ax, ds ; at the moment 64K segment
 mov es, ax ; es:bx determines where data is read from
 mov dh, 0 ; first side
 mov dl, byte [drive.d] ; Set correct device
 mov bx, fs ; es:bx is destination address in ram for read
 add bx, 1024 ; read to next block
 mov ch, 0 ; first track/cylinder
 mov cl, 1 ; read boot sector (1)
 mov ax, 1 ; ax (al) := how many sectors to read
 mov ah, 2 ; int 13H function ah:2 "read data from disk from ES:BX"
 int 13h ; read it!
 jc .readerror ; if error should try again, but we dont...
 mov dx, word [es:bx+8] ; address of magic number
 ; if the magic number (pi*10000) is not there then this
 ; maybe the wrong disk, so dont write to it!
 cmp dx, 31415
 jne .notpi
 ;mov es, [saven.es]
 ;jmp exec.nextopcode

 .write:
 ;*** need to save es since rstack points with it!!
 ;mov [saven.es], es
 mov ax, ds ; at the moment 64K segment
 mov es, ax ; es:bx determines where data is written from
 pop gs ; how many sectors (will go in AL)
 pop ax ; logical start sector
 .logical:
 ; Will there be issues with multi-track write? probably
 ; So sector 1 is the boot sector on disk.
 ; Calculate track (cylinder), head and sector (chs) settings
 ; for the int 13h (ah=3) write to disk function
 ; IN: logical sector in AX, OUT: correct registers for int 13h, ah=3
 ; cl := start sector (1-n)
 ; ch := track (or cylinder) number (0-n)
 ; dh := head (or side)
 ; dl := drive or boot device 0-3=diskette; 80H-81H=hard disk
 ; ah := 3 (Int 13h write sectors to disk function)
 ; al := how many sectors to read
 ; es:bx := source address in memory of data to write
 ;

 ; ax has how many sectors to write
 mov bx, ax ; Save logical sector
 mov dx, 0
 div word [sectorspertrack.d] ; First the sector
 add dl, 01h ; Physical sectors start at 1
 mov cl, dl ; Sectors belong in CL for int 13h
 mov ax, bx

 mov dx, 0 ; Now calculate the head
 div word [sectorspertrack.d]
 mov dx, 0
 div word [sides.d]
 mov dh, dl ; Head/side
 mov ch, al ; Track

 ; setting the drive correctly is pretty

 ; important, see sanity check above

 mov dl, byte [drive.d] ; Set correct device
 mov bx, fs ; es:bx is destination address in ram for write
 mov ax, gs ; ax (al) := how many sectors to read

 mov ah, 3 ; int 13H function ah:3 "write data to disk from ES:BX"
 int 13h ; Write it!
 jc .writeerror ; if error should try again, but we dont...

 ;*** restore es since rstack points with it!!
 mov es, [saven.es]
 mov dx, 1 ; return true flag for success
 jmp exec.nextopcode

 .readerror:
 .writeerror:
 ;*** restore es since rstack points with it!!
 mov es, [saven.es]
 mov dx, 0 ; return false flag for read error
 jmp exec.nextopcode

 .notpi:
 mov es, [saven.es]
 mov dx, -1 ; notpi flag
 jmp exec.nextopcode

 ; This opcode and vid.x are obviously not going to be
 ; available on all hardware. So we need to think about
 ; how to configure plugable opcodes. Eg: what if a device
 ; has a gyroscope. We want opcodes to read from that gyroscope
 ;
 fg.doc:
 ; db ’ (n --) ’
 ; db ’ set foreground colour for emit’
 ; dw $-fg.doc
 fg:
 dw write.x
 db ’fg’, 2
 fg.x:
 mov [fg.d], dl ;
 pop dx
 jmp exec.nextopcode
 fg.d: db 5 ; colour cyan

 ; not working
 bg.doc:
 ; db ’ (n --) ’
 ; db ’ set the background colour for emit’
 ; dw $-bg.doc
 bg:
 dw fg.x
 db ’bg’, 2
 bg.x:
 mov [bg.d], dl ;
 pop dx
 jmp exec.nextopcode
 ;ret
 bg.d: db 0 ;

 cls.doc:
 ; db ’ (--) ’
 ; db ’ clear screen’
 ; dw $-cls.doc
 cls:
 dw bg.x
 db ’cls’, 3
 cls.x:
 push dx

/home/arjuna/sf/htdocs/books/osdev/os.asm Sun Mar 28 21:12:07 2021 32

 mov ah, 06h ; ah=function number for int10 (06)
 mov al, 00h ; al=number of lines to scroll (00=clear screen)
 ;mov bx, 700h ; bh=color attribute for new lines (grey)
 mov bx, 00h ; bh=color attribute for new lines
 xor cx, cx ; ch=upper left hand line number of window (dec)
 ; cl=upper left hand column number of window (dec)
 mov dx, 184fh ; dh=low right hand line number of window (dec)
 ; dl=low right hand column number of window (dec)
 int 10h
 pop dx
 jmp exec.nextopcode

 cursor.doc:
 ; db ’ (n m -- / display cursor block from row m to row n, n>m *) ’
 ; db ’ sets the text screen cursor shape, with 0 0=hidden’
 ; dw $-cursor.doc
 cursor:
 dw cls.x
 db ’cursor’, 6
 cursor.x:
 ; CH = Scan Row Start, CL = Scan Row End
 ; CX=0607h normal underline cursor (start at row 6 end row 7)
 ; CX=0007h full-block
 ; CX=0706h start=7>end=6 This may hide the cursor!
 ; Or set bit 5 to hide cursor
 ; CX=2607h invisible cursor (bit 5 set)
 ; push dx
 mov ah, 01h ; int10 set cursor shape function
 xor cx, cx ;
 pop cx ; cl <- row end (NOS)
 mov ch, dl ; top of stack into ch
 int 10h
 pop dx ; 3rd-on-stack into DX (new tos)
 jmp exec.nextopcode

 vid.doc:
 ; db ’ (n --) ’
 ; db ’ set video mode to n’
 ; db ’ on x86 try 13h mode’
 ; dw $-vid.doc
 vid:
 dw cursor.x
 db ’vid’, 3
 vid.x:
 mov ax, dx ; get video mode
 mov ah, 0 ; ah=0 set video mode function, al=mode
 int 10h
 pop dx
 jmp exec.nextopcode

 ; pix is called "plot" in some old forths.
 plot.doc:
 ; db ’ (x y -- / show 1 pixel at [x,y] with colour from FG *) ’
 ; dw $-plot.doc
 plot:
 dw vid.x
 db ’plot’, 4
 plot.x:
 ; using interrupts to draw pixels is very slow but ok
 ; for playing around
 pop cx ; get x-coordinate
 ; y-coordinate in dx
 ; mov al, 15 ; white
 mov al, [fg.d] ; foreground colour set by FG
 mov ah, 0ch ; put pixel
 int 10h ; draw pixel
 pop dx
 jmp exec.nextopcode

 glyph.doc:
 ; db ’ (a --) ’
 ; db ’ display a colour glyph at pixel position xy’
 ; dw $-glyph.doc
 glyph:
 dw plot.x
 db ’glyph’, 5
 glyph.x:
 jmp exec.nextopcode

 ; this may be useful for timing code
 ; clock updates at 1193180/65536 (about 18.2) ticks per second.
 ; counts per second 18
 ; counts per minute 1092
 ; counts per hour 65543
 ; counts per day 1573040
 ; clock incremented approx every 55ms
 clock.doc:
 ; db ’ (-- D) ’
 ; db ’ number of clock ticks since midnight ’
 ; dw $-clock.doc
 clock:
 dw glyph.x
 db ’clock’, 5
 clock.x:
 push dx
 mov ah, 00h ; interrupt to get clock ticks since midnight
 int 1Ah ; cx:dx now holds number of clock ticks since midnight
 push dx ; low byte on lower stack position
 mov dx, cx ; high byte on higher stack position
 jmp exec.nextopcode

 ; There are "issues" here. It is not always possible to
 ; set format for rtc time, so need to check format from status
 ; register B and convert if necessary. Also, should check for
 ; 2 values the same in a loop, so overcome updating problems
 rtc.doc:
 ; db ’ (-- secs mins hours days months years) ’
 ; db ’return 6 values on stack representing real time and date. ’
 ; db ’called time&date in standard forths. ’
 ; dw $-rtc.doc
 rtc:
 dw clock.x
 db ’rtc’, 3
 rtc.x:
 push dx ; save top of stack
 xor ax, ax ; set ah, al == 0

 ; status register B controls format of rtc values but
 ; cant always be set

 cli
 mov al, 0x0B ; try to set date format
 out 0x70, al ; address reg
 ; set bit 1=24hour, bit 2=binary/bcd
 mov al, 6 ; set 2 low bits on date register B
 out 0x71, al ; set register
 sti

 .updating:

 ; not used at the moment
 mov al, 0x0A ; check if an update in progress
 out 0x70, al ; address reg
 in al, 0x71 ; get data from cmos data reg
 test al, 0x80 ; is high bit set?

 ; in theory we are not supposed to read the real time clock
 ; data if an update is in progress, but we wont worry at the

/home/arjuna/sf/htdocs/books/osdev/os.asm Sun Mar 28 21:12:07 2021 33

 ; moment about this

 cli ; disable interrupts
 mov al, 0x00 ; select seconds
 out 0x70, al ; address reg
 in al, 0x71 ; get seconds data from data reg
 sti
 push ax

 cli
 mov al, 0x02 ; select minutes
 out 0x70, al ; address rtc minute register
 in al, 0x71 ; get data from cmos data reg
 sti
 push ax

 cli
 mov al, 0x04 ; select Hour
 out 0x70, al ; address rtc minute register
 in al, 0x71 ; get hour data from cmos data reg
 sti
 push ax

 mov al, 0x07 ; Day of month
 out 0x70, al ; cmos select reg
 in al, 0x71 ; cmos data reg
 push ax

 mov al, 0x08 ; Month
 out 0x70, al ; cmos select reg
 in al, 0x71 ; cmos data reg
 push ax

 mov al, 0x09 ; Year
 out 0x70, al ; cmos select reg
 in al, 0x71 ; cmos data reg
 mov dx, ax ; tos=dx

 jmp exec.nextopcode

 noop.doc:
 ; db ’Does nothing. For some reason most machines ’
 ; db ’include this instruction. Also it is a good ’
 ; db ’end marker for the opcodes ’
 ; dw $-noop.doc
 noop:
 dw rtc.x
 db ’nop’, 3
 noop.x:
 jmp exec.nextopcode

 ; *******************************
 ; end of opcodes
 ; *******************************

 ; ************
 ; some immediate words
 ; ************

 ; namespace table here??

 hello.doc:
 ; db ’ (--)
 ; db ’ Just testing immediate procs ’
 hello:
 dw noop.x
 db ’hello’, IMMEDIATE | 5
 hello.p:
 db LIT, ’!’, EMIT

 db LIT, ’h’, EMIT
 db LIT, ’i’, EMIT
 db EXIT

 literal.doc:
 ; db ’ (comp: n --)(run: -- n)
 ; db ’ Push the TOS onto the data stack at run-time ’
 ; db ’ This advances compile point by 3 bytes ’
 literal:
 dw noop.x
 db ’literal’, IMMEDIATE | 7
 literal.p:
 db LIT, LITW ; n op=LITW
 db FCALL
 dw ccomma.p ; n /compile LITW opcode at HERE
 db FCALL ; tos is 2bytes so use , not c,
 dw comma.p ; tos will be pushed onto stack at runtime
 db EXIT

 ; create hangs on no input, but wparse doesnt.
 ; important word!! probably used by all defining words
 ; including colon : and VAR & CONSTANT
 ; create is not "immediate" funnily enough but colon is.
 ; there is a bug with defining words. actually we need a (create)
 ; which is this code below, and then an immediate create which
 ; sets a defining bit.
 create.doc:
 ; db ’ (--)
 ; db ’ create a new word header in the dictionary ’
 ; db ’ CREATE also compiles code to push the address of ’
 ; db ’ the parameter field onto the stack at runtime. ’
 ; db ’ As often pointed out, CREATE does not allocate any space ’
 ; db ’ for the parameter field. The coder can do that with ALLOT or ’
 ; db ’ C, or , etc .’
 ; db ’ In this x86 implementation, the start of the parameter field ’
 ; db ’ is just the next available byte in the dictionary. ’
 create:
 dw literal.p
 db ’create’, 6
 create.p:
 ; here>code does lots of important stuff, see above.
 ; such as executing the anon buffer
 db FCALL
 dw heretocode.p
 ; now compile the name to the dictionary. Use code in colon
 ; to see how.

 ; before any new words have been compiled with colon :
 ; then "last" points to "last" ! After new words have been
 ; added then "last" will point to the last word added
 ; (in the current namespace ...)
 db FCALL
 dw last.p ; /get pointer to last word in dictionary
 ; or last word in "current" definition word
 ; list
 db FETCH
 ;*** insert link to previous last word in dict at HERE
 db FCALL
 dw comma.p

 ;*** get the name & length of the new word
 db FCALL
 dw wparse.p ; a n
 ;*** if wparse returns 0 then no name, only whitespace
 db DUP ; a n n
 db JUMPZ, .noname-$; a n
 db DUP, RON ; a n r: n
 ; compile string to current compile position
 db FCALL

/home/arjuna/sf/htdocs/books/osdev/os.asm Sun Mar 28 21:12:07 2021 34

 dw scompile.p ; r: n
 db ROFF ; n
 ; compile count|control byte after name
 db FCALL
 dw ccomma.p
 ; set last pointer to new word execution address
 db FCALL
 dw here.p ; adr /xt for new word
 db FCALL
 ; change this to FCALL current.p (current definition wordlist)
 ; no just change last.p def
 dw last.p ; adr last /pointer to last word
 db STORE
 ; now compile some code that puts the parameter field address
 ; on the stack
 db FCALL
 dw here.p ; adr / address of next byte in dict (current xt)
 db LIT, 4, PLUS ; adr+3 / adjust for LITW, <adr>, EXIT == 4 bytes
 db LIT, LITW ; adr+3 op=LITW
 db FCALL
 dw ccomma.p ; adr+3 / compile LITW opcode
 db FCALL ; address is 2bytes so use , not c,
 dw comma.p ; /compile address of next byte in dictionary
 db LIT, EXIT ; op=EXIT
 db FCALL
 dw ccomma.p ; / compile EXIT opcode
 db FCALL
 dw codetohere.p ; set dp to here
 db EXIT

 .noname:
 db DROP, DROP ; clear data stack
 db LIT, ’?’, EMIT ;
 db LIT, ’?’, EMIT ;
 db EXIT

 callcomma.doc:
 ; db ’ (xt --)
 ; db ’ compile an fcall to xt ’
 callcomma:
 dw create.p
 db ’call,’, IMMEDIATE | 5
 callcomma.p:
 db LIT, FCALL ; xt op=fcall
 db FCALL
 dw ccomma.p ; xt
 db FCALL
 dw comma.p
 db EXIT

 ; This can be tested with : d drop ; : var go ; find d (does>)’
 ; should reset the code field of "go" to behaviour of "d"
 ; all defining words need to be immediate, so ’create’ could
 ; just do that automatically
 rundoes.doc:
 ; db ’ (--)
 ; db ’ perform run-time behaviour of does> ’
 rundoes:
 dw callcomma.p
 db ’(does>)’, 7
 rundoes.p:
 ; xt /xt -> code after does> in defining word
 ;db EXIT
 ; when (does>) runs then ’here’ should be pointing just after
 ; the parameter field of the new word. That is, just after any
 ; data space that has been allotted with ’allot’ or ’,’ etc
 db FCALL
 dw here.p ; xt here
 db DUP ; xt H H

 db FCALL
 dw last.p ; xt H H L*
 db FETCH ; xt H H last
 db DUP ; xt H H L L
 ; set new compile point to last xt (word just created)
 db FCALL
 dw ishere.p ; xt H H L
 ; compile jump opcode
 db LIT, JUMP ; xt H H L op=jump
 db FCALL
 dw ccomma.p ; xt H H L
 ; calculate jump offset. The jump must jump over the
 ; parameter field of the defined word (this field is
 ; allocated with ’allot’ or , or c, etc)
 db MINUS ; xt H (H-L)
 ; compile offset
 db FCALL
 dw ccomma.p ; xt H
 ; reset "here" to end of new word (after parameter field)
 db FCALL
 dw ishere.p ; xt
 ; compile code to push parameter field of new word onto stack
 ; at the run-time of the new word its param field goes onto
 ; the stack, so that the code after does> can use it.
 db FCALL
 dw last.p ; xt last*
 db FETCH ; xt last
 db LIT, 4, PLUS ; xt last+4
 db FCALL
 dw literal.p ; xt
 ; compile call to xt (code just after does> in defining word)
 db FCALL
 dw callcomma.p ;
 ; the code below is just ; semicolon
 ; could write
 ; db FCALL
 ; dw semicolon.p

 ; compile an exit for the new word being defined
 db LIT, EXIT ; op=exit
 db FCALL
 dw ccomma.p
 ; update the dictionary compile point and reset compile
 ; point to anon buffer (these are tasks that semicolon normally
 ; does)
 db FCALL
 dw codetohere.p ; do code>here
 db FCALL
 dw heretoanon.p ;
 db EXIT

 ; there are 3 "times" here. Compile-time for the defining word
 ; run-time for defining word (which is also compile-time for
 ; the defined word). And run-time for the defined word.
 ; These three "times" can make thinking about defining words
 ; tricky
 does.doc:
 ; db ’ (--)
 ;
 does:
 dw rundoes.p
 db ’does>’, IMMEDIATE | 5
 does.p:
 ; source:
 ; : does>
 ; here 7 + post literal [op:] fcall [call:] (does>)
 ; [op:] exit ; imm

 ; compile current ’here’ (compile point) so that it will

/home/arjuna/sf/htdocs/books/osdev/os.asm Sun Mar 28 21:12:07 2021 35

 ; be pushed onto stack at run-time of defining word
 ; (which is compile-time of defined word)
 db FCALL
 dw here.p ; H
 ; adjust the literal to account for the code following
 ; which will be compiled
 db LIT, 7, PLUS ; H+7
 db FCALL
 dw literal.p ;
 ; compile "fcall (does>)"
 ; but this is the same as call,
 db LIT, FCALL ; H op=fcall
 db FCALL
 dw ccomma.p ; H
 db LITW
 dw rundoes.p ; xt
 db FCALL
 dw comma.p
 ; compile an exit (for does> at run-time)
 db LIT, EXIT ; op=exit
 db FCALL
 dw ccomma.p
 db EXIT

 resetp.doc:
 ; db ’ (--)
 ; db ’ Resets dp and here to just after the wordname count byte’
 resetp:
 dw does.p
 db ’reset’, 5
 resetp.p:
 ; After create HERE and dp @ should both be pointing just after
 ; code to push parameter field onto stack, so we need to
 ; repoint these back to the xt (just after the name count byte)
 db FCALL
 dw dp.p ; dp
 db DUP ; dp dp
 db FETCH, LIT, 4 ; dp code* 4
 db MINUS ; dp code*-4
 db SWAP ; code*-4 dp
 db STORE ;
 db FCALL
 dw heretocode.p ; set here to point to dp
 db EXIT

 ; things to do in CREATE (called by : COLON)
 ; Set HERE to next code space with HERE>CODE
 ; create a header. first link back using LAST
 ; and set LAST to new word
 ; then compile name, with S,
 ; compile count, then just exit and let IN, handle the rest
 ; (which is actually calling : COLON anyway).
 ; In semicolon:
 ; when ; compile "exit" set dp to here
 ;
 colon.doc:
 ; db ’ (--)
 ; db ’ Creates a new word in the dictionary.’
 ; db ’ The only difference with the CREATE word is that ’
 ; db ’ no code is appended after the word name and count ’
 colon:
 dw resetp.p
 db ’:’, IMMEDIATE | 1
 colon.p:

 ; HERE>CODE in CREATE will execute stuff in the ANON buffer
 ; (as with all defining words which use create.)
 db FCALL
 dw create.p

 db FCALL
 dw resetp.p
 db EXIT

 ;.noname:
 ; db DROP, DROP ; clear data stack
 ; db LIT, ’?’, EMIT ;
 ; db LIT, ’?’, EMIT ;
 ; db EXIT

 semicolon.doc:
 ; db ’ (--)
 semicolon:
 dw colon.p
 db ’;’, IMMEDIATE | 1
 semicolon.p:
 ; compile an exit
 ; set dp to here
 ; set ishere to anon buffer
 db LIT, EXIT
 db FCALL
 dw ccomma.p ; compile opcode exit
 db FCALL
 dw codetohere.p ; do code>here
 db FCALL
 dw heretoanon.p ; compile all to anon, not dictionary
 db EXIT

 %if 0
 ; in source
 %endif

 %if 0
 ; in source, can delete
 %endif

 ; this can be written as source but is useful for debugging
 ; bytecode words and so will be left.
 dotstack.doc:
 ; db ’ (--)
 ; db ’ display the items on the data stack without ’
 ; db ’ altering it. The top (or most recent) item ’
 ; db ’ is printed rightmost ’
 dotstack:
 dw semicolon.p
 db ’.s’, 2
 dotstack.p:
 ; below we need a copy of the stack depth
 ; because it gets decremented by the rloop
 ; need to sieve stack items onto rstack
 ; with >r, swap, r>, swap, >r etc
 db DEPTH, DUP ; n n
 db JUMPNZ, 4 ; n
 db DROP
 db EXIT
 ;*** put all items on return stack
 db DUP ; n n
 db RON ; n r: n
 db SWAP, ROFF ; n a n-x
 db SWAP, RON ; n n-x r: a
 db RON ; n r: a n-x
 db RLOOP, -5 ; n r: a n-x-1
 db ROFF ; n 0 r: a b c ...
 db DROP ; n r: a b c ...
 ;*** print all stack items
 db RON ; r: a b c ... n
 db ROFF ; n r: a b c ...
 db ROFF ; n c r: a b

/home/arjuna/sf/htdocs/books/osdev/os.asm Sun Mar 28 21:12:07 2021 36

 db DUP ; n c c r: a b
 db FCALL
 ; this should be dw dot.p because stack is normally shown
 ; as signed numbers. See source version.
 dw udot.p ; n c r: a b
 db LIT, ’ ’, EMIT ; n c r: a b
 db SWAP, RON ; c r: a b n
 db RLOOP, -11 ; c r: a b n-1
 db ROFF ; a b c ... 0
 db DROP ; a b c ...
 db EXIT

 %if 0
 ; in source, can delete
 %endif

 rcount.doc:
 ; db ’ (adr -- adr-n n) ’
 ; db ’ count a reverse counted string, ignoring control bit(s). ’
 ; db ’ Given a pointer to the count byte of a ’
 ; db ’ reverse counted string, return the address of the 1st byte ’
 ; db ’ of the string and its length. This proceedure ’
 ; db ’ may also handle the anding out of the immediate ’
 ; db ’ control bit which is stored in the msb of the ’
 ; db ’ count for execution tokens ’
 ; dw $-rcount.doc
 rcount:
 dw dotstack.p
 db ’rcount’, 6
 rcount.p:
 ; adr
 db DUP, CFETCH ; a n / get the count
 db LIT, 0b00011111 ; a n mask
 db LOGAND ; a n&mask
 db DUP ; a n n
 db RON, MINUS ; adr-n
 db ROFF ; adr-n n
 db EXIT

 ; this doesnt seem to be used. can remove
 ; maybe have a "defining" state instead of this control bit?.
 def.doc:
 ; db ’ (xt --) ’
 ; db ’ Set the "defining" control bit in the count byte ’
 ; dw $-def.doc
 def:
 dw rcount.p
 db ’def’, 3
 def.p:
 ; adr
 db DECR ; adr-1
 db DUP, CFETCH ; a n / get the count
 ; the def bit is the second bit in count byte
 db LIT, 0b01000000 ; a n mask
 db LOGOR ; a n.v.mask
 db SWAP ; m a
 db CSTORE ;
 db EXIT

 ; used by other bytecode so cant really rewrite as source
 dotxt.doc:
 ; db ’ (adr -) ’
 ; db ’ given a valid execution token on the stack ’
 ; db ’ print the name of the procedure’
 ; db ’ The source definition might be
 ; db ’ : .xt -1 rcount type ; ’
 ; dw $-dotxt.doc
 dotxt:
 dw def.p

 db ’.xt’, 3
 dotxt.p:
 ; xt
 db DECR ; adr-1
 db FCALL
 dw rcount.p
 db FCALL
 dw type.p
 db EXIT

 xttoop.doc:
 ; db ’ (adr -- n) ’
 ; db ’ Given the address of an execution token ’
 ; db ’ or procedure on the stack provides the numeric ’
 ; db ’ opcode for that procedure or else 0 for ’
 ; db ’ an address which does not correspond to a bytecode.’
 ; db ’ This is used to compile text to bytecode ’
 ; db ’ if not an opcode, then compile FCALL etc ’
 xttoop:
 dw dotxt.p
 db ’xt>op’, 5
 xttoop.p:
 ; adr
 db DUP ; adr adr
 db LITW ;
 dw op.table ; a a T
 db FETCHPLUS ; a a T+2 [T]
 db SWAP, RON ; a a [T] r: T+2
 db EQUALS ; a flag r: T+2
 db JUMPT, 19 ; a r: T+2
 db DUP, ROFF ; a a T+2
 ;**** check if end of table
 db DUP ; a a T+2 T+2
 db FETCH ; a a T+2 [T+2]
 db LIT, -1 ; a a T+2 [T+2] -1
 db EQUALS ; a a T+2 flag
 db JUMPF, .moreops-$; a a T+2
 db DROP, DROP, DROP ;
 db LIT, 0 ; 0 / return false if not opcode
 db EXIT
 ;
 .moreops:
 db JUMP, -21 ; a a T+2
 ;** opcode found, calculate offset
 db DROP, ROFF ; T+2
 db DECR, DECR ; T
 db LITW
 dw op.table
 db MINUS ; T - optable
 db DIVTWO ; opcode
 db EXIT

 %if 0
 ; rewrite as source
 %endif

 udot.doc:
 ; db ’ (n --) ’
 ; db ’ display top stack element as unsigned ’
 ; db ’ number in the current base. ’
 ; dw $-udot.doc
 udot:
 ;dw dotcode.p
 dw xttoop.p
 db ’u.’, 2
 udot.p:
 ; as source
 ; : u. (n --)
 ; 0 >r

/home/arjuna/sf/htdocs/books/osdev/os.asm Sun Mar 28 21:12:07 2021 37

 ; begin
 ; base @
 ; \ n b r: count
 ; /mod r> 1+ >r
 ; ; rem quot
 ; dup
 ; until
 ;
 db LIT, 0, RON ; n r: 0
 .divide:
 db LITW
 dw base.d ; n adr r: 0
 db CFETCH ; n base
 db UDIVMOD ; rem quotient
 db ROFF, INCR, RON ; rem quotient r: 0+1
 db DUP
 db JUMPNZ, .divide-$
 ; rem rem rem ... 0
 db DROP ; rem rem ... r: x
 ; as source
 ; drop r> 0
 ; do
 ; digits ii + c@ emit
 ; loop drop ;
 ;
 .printc:
 db LITW ; use digit lookup table
 dw digits.d ; r r r ... adr r: x
 db PLUS ; r r ... adr+r r: x
 db CFETCH ; r r ... d r: x
 db EMIT ; rem ... print asci digit
 db RLOOP, .printc-$; rem ... r: x-1
 db ROFF, DROP ; clear rstack
 db EXIT

 ; But this is also the way to print a double number, name clash
 ddot.doc:
 ; db ’ (n --) ’
 ; db ’ display top stack element as unsigned ’
 ; db ’ number in decimal ’
 ; dw $-ddot.doc
 ddot:
 dw udot.p
 db ’d.’, 2
 ddot.p:
 ; n
 db LIT, 0, RON ; n r: 0
 db LIT, 10 ; n 10 r: 0
 db DIVMOD ; rem quotient
 db ROFF, INCR, RON ; rem quotient r: 0+1
 db DUP, JUMPNZ, -7
 ; rem rem rem ... 0 r: x
 db DROP ; rem rem ... r: x
 db LIT, ’0’, PLUS, EMIT ; rem ... print remainder
 db RLOOP, -4 ; rem ... r: x-1
 db ROFF, DROP ; clear rstack
 db EXIT

 dot.doc:
 ; db ’ (n --) ’
 ; db ’ display top stack element as a signed number ’
 ; db ’ in the current base (if u. does so) ’
 ; dw $-dot.doc
 dot:
 dw ddot.p
 db ’.’, 1
 dot.p:
 ; n
 db DUP ; n n

 db LIT, 0 ; n n 0
 db LESSTHAN ; n flag / n<0 ?
 db JUMPF, 6 ; n
 db NEGATE ; -n
 db LIT, ’-’, EMIT ; -n /print negative sign
 db FCALL
 dw udot.p
 db EXIT

 cdot.doc:
 ; db ’ (n --) ’
 ; db ’ display top stack element as a signed 8 bit ’
 ; db ’ number in the current base (if u. does so) ’
 ; db ’ This is useful for displaying relative jumps ’
 ; db ’ which are 1 byte signed numbers. ’
 ; db ’ eg: 255 = -1, 254 = -2, 128 = -127
 ; dw $-cdot.doc
 cdot:
 dw dot.p
 db ’c.’, 2
 cdot.p:
 ; n
 db DUP ; n n
 db LITW
 dw 128 ; n n 128
 db LESSTHAN ; n flag / n < 128
 db JUMPT, 6 ; n
 db LITW
 dw 256
 db MINUS ; n-256
 db FCALL
 dw dot.p
 db EXIT

 ; see source code for a simpler way to do this
 ; without a lookup table of digits. eg : extract
 todigit.doc:
 ; db ’ (c -- n flag) ’
 ; db ’ converts the ascii character of a digit ’
 ; db ’ on the stack to its corresponding integer ’
 ; db ’ using the base (1<base<37) ’
 ; db ’ If the character c is not ’
 ; db ’ a valid digit in the current base, then zero ’
 ; db ’ is put onto the stack as a false flag. Otherwise’
 ; db ’ -1 is put onto the stack ’
 ; dw $-todigit.doc
 todigit:
 dw cdot.p
 db ’>digit’, 6
 todigit.p:
 ; c
 db DUP ; c c
 db LITW
 dw digits.d ; c c adr
 db LITW
 dw base.d ; c c adr adr
 db CFETCH ; c c a n
 db RON ; c c a r: n

 db CFETCHPLUS ; c c a+1 C r: n
 db SWAP, RON ; c c C r: n a+1
 db EQUALS ; c flag r: n a+1
 db JUMPT, 10 ; c r: n a+1
 db DUP ; c c r: n a+1
 db ROFF ; c c a+1 r: n
 db RLOOP, -8 ; c c a+1 r: n-1
 ;*** not a valid digit
 db DROP, DROP ; c r: 0
 db ROFF ; c 0

/home/arjuna/sf/htdocs/books/osdev/os.asm Sun Mar 28 21:12:07 2021 38

 db EXIT
 ;*** valid asci digit, convert to number
 db DROP ; r: n-x a+1
 db ROFF, DROP ; r: n-x
 db ROFF ; n-x
 db LITW
 dw base.d ; n-x adr
 db CFETCH ; n-x n
 db SWAP ; n n-x
 db MINUS ; x
 db LIT, -1 ; x -1 / -1 is true flag
 db EXIT

 digits.doc:
 ; db ’ (-- A) ’
 digits:
 dw todigit.p
 db ’digits’, 6
 digits.p:
 db LITW
 dw digits.d
 db EXIT
 digits.d: db ’0123456789ABCDEFGHijklmnopqrstuvwxyz’

 ; base is 16bits in all forths. so we can do: 10 base !
 base.doc:
 ; db ’ (-- adr) ’
 ; db ’ puts on the stack the address of the current ’
 ; db ’ numeric base ’
 ; db ’ which is used for displaying and parsing ’
 ; db ’ numbers. The base should be 1 < base < 37 ’
 ; db ’ since these are the digits which can be ’
 ; db ’ displayed using numerals and letters ’
 ; db ’ eg: base c@ . ’
 ; db ’ displays the current base ’
 ; dw $-base.doc
 base:
 dw digits.p
 db ’base’, 4
 base.p:
 db LITW
 dw base.d
 db EXIT
 base.d: dw 10

 %if 0
 %endif

 tonumber.doc:
 ; db ’ (adr n -- adr/n flag) ’
 ; db ’ Given a pointer to string adr with length "n" ’
 ; db ’ attempt to convert the string to ’
 ; db ’ a number. If successful put number and true flag’
 ; db ’ on the stack, if not put pointer to incorrect digit’
 ; dw $-tonumber.doc
 tonumber:
 dw base.p
 db ’>number’, 7
 tonumber.p:

 ; a n
 db LIT, 0, RON ; a n r: 0 /false neg flag
 db RON ; a r: 0 n
 ;*** check for +/- at first char
 db DUP, CFETCH ; a c r: 0 n
 db LIT, ’+’ ; a c ’+’ ...
 db EQUALS ; a flag ...
 db JUMPF, 8 ; a ...
 db ROFF, DECR, RON ; a r: n-1

 db INCR ; a+1 r: 0 n-1
 db JUMP, 16 ; a+1 r: 0 n-1
 db DUP, CFETCH ; a c r: 0 n
 db LIT, ’-’ ; a c ’-’ r: 0 n
 db EQUALS ; a flag r: 0 n
 db JUMPF, 9 ; a r: 0 n

 ;*** set a +/- flag on the rstack
 db ROFF, DECR ; a n-1 r: 0
 db ROFF, DECR ; a n-1 -1
 db RON, RON ; a r: -1 n-1
 db INCR ; a+1 r: -1 n-1

 ;*** exit if zero length string or just +/-
 db ROFF ; a n r: -1
 db DUP ; a n n r: -1
 db JUMPNZ, 5 ; a n r: -1
 db ROFF, DROP ; a 0
 db EXIT
 db RON ; a r: -1 n

 db LIT, 0 ; a 0 r: n /initial sum
 db SWAP ; 0 a r: n
 db CFETCHPLUS ; 0 a+1 d r: n
 ;*** check if digit
 db FCALL
 dw todigit.p ; 0 a+1 D flag r: n
 db JUMPF, 24 ; 0 a+1 D r: n
 ;***
 db RON ; 0 a+1 r: n 0-9
 db SWAP ; a+1 s r: n digit /s is sum

 db LITW
 dw base.d
 db CFETCH ; a+1 s base r: n digit
 db UMULT ; a+1 s*base r: n digit

 db ROFF ; a+1 s*base digit r: n
 db PLUS ; a+1 s r: -flag n
 db SWAP ; s a+1 r: -flag n
 db RLOOP, -16 ; s a+1 r: -flag n-1 /back to c@+
 db ROFF, DROP ; s a+1 r: -flag
 db DROP ; s r: -flag
 db ROFF ; s -flag
 db JUMPF, 3 ; s / skip if +
 db NEGATE ; -s / negate if flag set

 db LIT, -1 ; s -1 /value and true flag
 db EXIT
 ;*** non digit ; sum a+1 d
 db DROP, SWAP ; a+1 sum r: 0 n
 db DROP ; a+1 r: 0 n
 db LIT, 0 ; a+1 0
 db ROFF, DROP ; clear return stack
 db ROFF, DROP ; clear return stack
 db EXIT

 toword.doc:
 ; db ’ (-- adr n) ’
 ; db ’ put on the stack a pointer to the current ’
 ; db ’ word and its length. ’
 toword:
 dw tonumber.p
 db ’>word’, 5
 toword.p:
 ; handle zero case (no word found)
 db LITW
 dw toword.d ; adr
 db FETCH ; aw

/home/arjuna/sf/htdocs/books/osdev/os.asm Sun Mar 28 21:12:07 2021 39

 db DUP ; aw aw
 db LITW
 dw inp.d ; aw aw a
 db FETCH ; aw aw ap
 db SWAP ; aw ap aw
 db MINUS ; aw n
 db EXIT
 toword.d dw 0 ; pointer to start of current word

 wspace.doc:
 ; db ’ (c -- flag) ’
 ; db ’ return true if character c is whitepace (tab, space, 0 etc) ’
 wspace:
 dw toword.p
 db ’wspace’, 6
 wspace.p:
 ; stack diagram no good
 ; c
 ; space
 db DUP ; c c
 db LIT, ’ ’ ; c c space
 db EQUALS ; c flag
 db SWAP ; flag c
 ; carriage return
 db DUP ; c c
 db LIT, 10 ; c c space
 db EQUALS ; c flag
 db SWAP ; flag c
 ; newline
 db DUP ; flag c c
 db LIT, 13 ; flag c c cr
 db EQUALS ; flag c flag
 db SWAP ; f f c
 ; zero
 db DUP ; f f c c
 db LIT, 0 ; f f c c 0
 db EQUALS ; f f c f
 db SWAP ; f f f c
 ; tab
 db DUP ; f f f c c
 db LIT, 9 ; f f f c c tab
 db EQUALS ; f f f c f
 db SWAP ; f f f f c
 ; combine flags
 db DROP ; f f f f
 db LOGOR ; f f f
 db LOGOR ; f f
 db LOGOR ; f
 db LOGOR ; f
 db EXIT

 wparse.doc:
 ; db ’ (-- adr n) ’
 ; db ’ return next word and length in the current input stream.’
 ; db ’ the input stream is parsed for whitespace delimited words. ’
 ; db ’ WPARSE skips initial whitespace. It is an important word ’
 ; db ’ because it is the standard way to get the next word in ’
 ; db ’ the current input stream, so things like CHAR and CREATE ’
 ; db ’ rely on it.
 ; db ’ For a more traditional forth "parse" see "parse.p" ’
 ; dw $-parse.doc
 wparse:
 dw wspace.p
 db ’wparse’, 6
 wparse.p:
 ; >in
 db FCALL
 dw toin.p ; adr n
 db DUP ; a n n

 ;*** no more text so nothing to parse
 db JUMPZ, .notext-$; a n
 ;*** get the name of the new word
 db RON ; adr r: n
 .nextspace:
 db CFETCHPLUS ; a+1 [a] r: n
 ; check for other whitespace, eg 0 tab, cr etc
 ; write a "whitespace" word
 db FCALL
 dw wspace.p ; a+1 flag r: n /true if whitespace
 ;db LIT, ’ ’ ; a+1 c space r: n
 ;db EQUALS ; a+1 flag ...
 db JUMPF, .nonspace-$; a+1 ...
 db RLOOP, .nextspace-$; a+1 r: n-1
 ;*** no char found, so return 0
 db DECR ; a r: 0
 db ROFF ; a 0
 db EXIT ;
 ;*** char found
 .nonspace:
 db DECR ; a r: n-m
 ;*** for debug
 ; db DUP, CFETCH, EMIT
 db DUP ; a a ...
 ;*** check rstack==0 and exit if so

 ;*** scan for next whitespace
 .nextchar:
 db CFETCHPLUS ; a a+1 [a] r: n-m
 ;*** check for whitespace character.
 db FCALL
 dw wspace.p ; a a+1 flag
 db JUMPT, .space-$; a a+1 ...
 db RLOOP, .nextchar-$; a a+1 r: n-m-1
 db INCR ; a a+2 ... /balance decr
 ;***
 .space:
 db DECR ; a a+p-1 r: 0
 db ROFF, DROP ; a a+p-1 /clear rstack
 ;*** now calculate length of word
 db RON, DUP, ROFF ; a a a+p-1
 db SWAP, MINUS ; a p-1
 ; do 2dup, in+ at this point to advance the parse point
 ; in the input stream.
 db TWODUP ; a n a n
 db FCALL
 dw inplus.p ; a n
 db EXIT
 .notext: ; a 0
 db EXIT

 ; the length returned may be +1 (?)
 ; this allows comments eg
 ; : (41 parse ; imm

 ; Can write this as source
 parse.doc:
 ; db ’ (char -- adr n) ’
 ; db ’ scan input stream for char and return length and address.’
 ; db ’ The current input stream (IN) is scanned for the next char’
 ; db ’ matching char. The parse position of the stream is advanced ’
 ; db ’ after this call. If not found, then parse position and 0’
 ; db ’ is returned.’
 ; dw $-parse.doc
 parse:
 dw wparse.p
 db ’parse’, 5
 parse.p:
 ; as source

/home/arjuna/sf/htdocs/books/osdev/os.asm Sun Mar 28 21:12:07 2021 40

 ; : parse >r >in dup
 ; ; a n n r: char
 ; if >r dup
 ; ; a a r: char n
 ; begin c@+ r> r>
 ; ; a a+1 [a] n char
 ; 2dup >r >r
 ; ; a a+1 [a] n char r: char n
 ; swap drop =
 ; ; a a+1 F r: char n
 ; ...

 ; if r> r> 2drop
 ; ; a a+p-1 /clear rstack
 ; over - 2dup in+ 1- ;
 ;
 db RON ; r: char
 db FCALL
 dw toin.p ; adr n r: char
 db DUP ; a n n r: char
 ;* no more text so nothing to parse
 db JUMPZ, .notext-$; a n r: char
 ;* make the input stream length the counter
 db RON ; adr r: char n
 db DUP ; a a ...
 ;*** scan for next char
 .nextchar:
 db CFETCHPLUS ; a a+1 [a] r: char n
 ;*** check for scan character.
 db ROFF, ROFF ; a a+1 [a] n char
 db TWODUP ; a a+1 [a] n char n char
 db RON, RON ; a a+1 [a] n char r: char n
 db SWAP, DROP ; a a+1 [a] char r: char n
 db EQUALS ; a a+1 T/F r: char n

 ;db FCALL
 ;dw wspace.p ; a a+1 flag
 db JUMPT, .found-$; a a+1 r: char n
 db RLOOP, .nextchar-$; a a+1 r: char n
 .notfound:
 ; a a+n r: char 0

 ; change the behaviour of parse so that it
 ; advances to the end of the stream if not found.

 ; db DROP ; a r: char 0
 ; db ROFF, ROFF ; a 0 char
 ; db DROP ; a 0
 ; db EXIT

 ;db INCR ; a a+2 ... /balance the next decr
 ;***

 .found:
 ;db DECR ; a a+p-1 r: char 0
 db ROFF, DROP ; a a+p-1 r: char /clear rstack
 db ROFF, DROP ; a a+p-1 /clear rstack
 ; calculate the length until the character
 db OVER, MINUS ; a p-1
 ; Advance the parse point in the input stream.
 db TWODUP ; a n a n
 db FCALL
 dw inplus.p ; a n
 ; decrement text length to ignore final delimiter character
 db DECR ; a n-1
 db EXIT
 .notext: ; a 0 r: char
 db ROFF, DROP ; a 0

 db EXIT

 ; A simple error message when a word is not found.
 ; The "missing" word should be overridden with, for example
 ; ’ miss is missing
 ; where blah is a word which gives a good error message
 ; (shows the search order, stacks, etc)
 miss.doc:
 miss:
 dw parse.p
 db ’miss’, 4
 miss.p:
 ; (n/xt/op 0)
 db LIT, 13, EMIT
 db LIT, 10, EMIT
 db DROP, DROP ;
 db FCALL
 dw toword.p ; ad n
 db LIT, 5, FG ; set word colour to cyan
 db FCALL
 dw type.p
 db LIT, 4, FG ; set word colour to red
 db LIT, ’ ’, EMIT
 db LIT, ’?’, EMIT
 db LIT, ’?’, EMIT
 db LIT, ’ ’, EMIT
 db LIT, 2, FG ; colour green
 db LIT, ’@’, EMIT
 db LIT, 14, FG ; colour yellow
 db FCALL ; pointer to last created word in dictionary
 dw last.p ; A
 db FETCH ; [A]
 db FCALL
 dw dotxt.p ; print out last word compiled
 db LIT, 7, FG ; set word colour to cyan
 db LIT, 13, EMIT
 db LIT, 10, EMIT
 ;*** compile an exit even when an error occurs
 ;
 db LIT, EXIT
 db FCALL
 dw ccomma.p ; compile opcode EXIT
 db EXIT

 ; do something when a word is not found
 ; This is a deferred word. In the current implementation
 ; (feb 2019) deferred words are just 4 bytes of code-space
 ; (no "does>" element). Either an opcode+exit is compiled there
 ; or an fcall+<address>+exit
 ; do:
 ; ’ newmiss is missing
 ; where newmiss provides more information about the missing
 ; word.
 ; Eventually "missing" could look up words in source code
 ; and compile them. Or find similar words in different
 ; word lists, or look for the words on the net.
 missing.doc:
 ; (n/xt/op flag=0)
 missing:
 dw miss.p
 db ’missing’, 7
 missing.p:
 db FCALL
 dw miss.p
 db EXIT
 db 0

 ; this is almost identical to "source"
 inputcompile.doc:

/home/arjuna/sf/htdocs/books/osdev/os.asm Sun Mar 28 21:12:07 2021 41

 ; db ’ (--) ’
 ; db ’ compiles the input stream starting from the current ’
 ; db ’ input parse position until the end of the stream ’
 ; dw $-inputcompile.doc
 inputcompile:
 dw missing.p
 db ’in,’, 3
 inputcompile.p:
 .nextword:
 db FCALL
 dw wparse.p ; a+x n /address+length of next word
 ;*** if parse returns 0 then no more words (all space)
 db DUP ; a+x n n
 db JUMPZ, .endofstream-$; a+x n
 ;*** convert name to number/opcode/fpointer + flag
 db FCALL
 dw tick.p ; n/op/xt flag
 ;db FCALL
 ;dw dotstack.p
 ;*** if flag==0 abort, unknown word/number
 db DUP ; m flag flag
 db JUMPZ, .error-$; n/op/xt flag

 ;*** immediate words like if/fi begin will leave
 ; parameters on the data stack
 db FCALL
 dw itemcompile.p ;
 db JUMP, .nextword-$
 .endofstream:
 ;*** no more words (>in returned zero)
 ;*** compile a final exit even if no semi-colon was
 ; given
 db DROP, DROP ; clear stack
 db LIT, EXIT
 db FCALL
 dw ccomma.p ; compile opcode EXIT
 db EXIT
 .error:
 ;db FCALL
 ;dw dotstack.p
 db FCALL
 dw missing.p ; handle error with deferred word "missing"
 db EXIT

 ; now, should adr be a counted string? should we compile only one
 ; block (1K), or have another paramter to determine the length?
 ; this should be (adr length --). And source should be just the
 ; same word as inputcompile.p
 ; One problem: words outside of : defs are compiled to the anon
 ; buffer, and then need to be executed. Eg the immediate word
 ;
 source.doc:
 ; db ’ (adr n --) ’
 ; db ’ compile forth source code from address adr ’
 ; db ’ This is called "load" in many forths.’
 ; dw $-source.doc
 source:
 dw inputcompile.p
 db ’source’, 6
 source.p:

 ; need to save the current input stream and position
 ; eg in.d in.length inp.d and toword.d
 ; but where to save ?

 ;*** set "in" var to adr
 db FCALL
 dw resetin.p ; set in = adr = >in = >word

 db LITW
 dw anon.d
 db FCALL
 dw ishere.p

 ;*** rub out anon
 db LIT, EXIT
 db FCALL ; compile opcode exit
 dw ccomma.p

 db LITW
 dw anon.d
 db FCALL
 dw ishere.p

 ;*** compile input buffer
 db FCALL
 dw inputcompile.p

 .run:
 ; now run the compiled stuff
 ; but only run anon if it has something in it...
 db LITW
 dw anon.d
 db PCALL
 db FCALL
 dw ok.p
 db EXIT

 ok.doc:
 ; db ’ (--) ’
 ; db ’ just prints ok ’
 ok:
 dw source.p
 db ’ok’, 2
 ok.p:
 ; db LIT, 13, EMIT
 ; db LIT, 10, EMIT
 db LIT, 2, FG ; set to green
 db LIT, ’ ’, EMIT
 db LIT, ’o’, EMIT
 db LIT, ’k’, EMIT
 db LIT, 7, FG ; set to white
 db LIT, 13, EMIT
 db LIT, 10, EMIT
 db EXIT

 %if 0
 %endif

 ; this is a deferred word so that we can write a word
 ; to search all wordlists (find.so) and use it later. But
 ; find.so is making compilation very slow.
 nfind.doc:
 ; (n/xt/op flag=0)
 nfind:
 dw ok.p
 db ’nfind’, 5
 nfind.p:
 db FCALL
 dw ffind.p
 db EXIT
 db 0

 ; There also needs to be a list of all wordlists, not just
 ; the ones in the search order buffer.

 ; with wordlists/namespaces, nfind will search namespaces in

/home/arjuna/sf/htdocs/books/osdev/os.asm Sun Mar 28 21:12:07 2021 42

 ; the search order s/o buffer.
 ; Ans forth find is (A -- xt) where A is a counted string.

 ; This is probably the most important word for speed of compilation
 ffind.doc:
 ; db ’ (adr n -- xt) ’
 ; db ’ return the execution address for the given word function. ’
 ; db ’ Given a pointer to a string "adr" with length n ’
 ; db ’ return the execution token (address) for the word’
 ; db ’ or else zero if the word was not found. ’
 ; dw $-nfind.doc
 ffind:
 dw nfind.p
 db ’ffind’, 5
 ffind.p:
 ; a n
 ; see find.so for a word that
 ; searches all wordlists in
 ; the s/o search order buffer.
 db FCALL ; pointer to last created word in dictionary
 dw last.p ; a n A
 ; using context nearly works for nfind, but it fails
 ; in block 49 when the context is changed.
 ;dw context.p
 db FETCH ; a n last

 .again:
 db DECR ; point to count|control byte of name
 db FCALL
 dw rcount.p ; a n A N

 ; db RON, OVER, ROFF ; a n A n N
 ;*** now compare the 2 string lengths n & N
 db SWAP ; a n N A
 db RON, RON ; a n r: A N
 db DUP, ROFF ; a n n N r: A
 db EQUALS ; a n flag r: A
 db JUMPF, .lengthsnotequal-$; a n r: A
 db ROFF ; a n A
 db SWAP ; a A n

 ;*** save values on rstack, clumsy?
 db RON, TWODUP ; a a A A r: n

 db RFETCH ; a a A A n r: n
 db SWAP, RON ; a a A n r: n A
 ;*** compare two strings
 db FCALL ; are strings equal?
 dw ncompare.p ; a flag r: n A
 ;
 db JUMPF, .notequal-$; a r: n A
 ; if strings same clear stacks
 db DROP, TWOROFF ; A n
 db PLUS, INCR ; A+n+1
 ; A+n+1 is the execution address. found, so exit now
 db EXIT
 ; if false, balance stacks and jump down
 .notequal:
 ; a r: n A
 db TWOROFF ; a A n
 db SWAP ; a n A
 db JUMP, 3 ; a n A /get next pointer
 .lengthsnotequal:
 db ROFF ; a n A
 db DECR, DECR ; a n A-2 /A-2 points to previous
 db FETCH ; a n [A-2]
 db DUP ; a n [A-2] [A-2]
 db JUMPNZ, .again-$; a n [A-2]

 db TWODROP, DROP ; clear stack
 db LIT, 0 ; zero means not found
 db EXIT

 immediate.doc:
 ; db ’ (--) ’
 ; db ’ make the last word immediate. ’
 ; db ’ Set the immediate control bit’
 immediate:
 dw ffind.p
 db ’imm’, 3
 immediate.p:
 db FCALL
 dw last.p ; addr
 db FETCH ; xt
 db DECR ; xt-1
 db DUP ; xt-1 xt-1
 db CFETCH ; xt-1 [xt-1] /get the count/control byte
 db LIT, IMMEDIATE ; xt-1 count|control 0b10000000
 db LOGOR ; xt-1 nVimm / zero or non zero
 db SWAP ; m xt-1
 db CSTORE ; trap! the count|control is only one byte
 db EXIT

 isimmediate.doc:
 ; db ’ (xt -- flag) ’
 ; db ’ returns 0 if word is not immediate. <>0 otherwise ’
 ; db ’ given the execution address for a procedure ’
 ; db ’ return a flag indicating if the procedure ’
 ; db ’ is immediate or not. Immediate procedures are ’
 ; db ’ executed at compile time, not compiled ’
 ; db ’ so, essentially, they compile themselves. ’
 ; db ’ this allows the compiler to be extended by ’
 ; db ’ procedures. The immediate control bit is the ’
 ; db ’ most significant bit of the count byte in the ’
 ; db ’ name. Immediate words have both a compile-time and ’
 ; db ’ a run-time behaviour, whereas non-immediate words ’
 ; db ’ have only a run-time behaviour.
 isimmediate:
 dw immediate.p
 db ’imm?’, 4
 isimmediate.p:
 ; xt
 db DECR ; xt-1
 db CFETCH ; [xt-1] /get the count byte
 db LIT, IMMEDIATE ; n 0b10000000
 db LOGAND ; n & imm / zero or non zero
 db EXIT

 tick.doc:
 ; db ’ (A n -- n flag) ’
 ; db ’ given a pointer "A" to a string of length n ’
 ; db ’ attempt to convert the name to either ’
 ; db ’ an opcode, procedure execution code, or number/integer ’
 ; db ’ the flag indicates the type of token returned ’
 ; db ’ a flag of zero means that the name is neither ’
 ; db ’ number nor opcode nor xt’
 ; db ’ flag=0 not number nor word ’
 ; db ’ flag=1 if number, 2 if opcode, 3 if procedure ’
 ; dw $-tick.doc
 tick:
 dw isimmediate.p
 db ’tick’, 4
 tick.p:
 ; a n
 db TWODUP ; a n a n
 db FCALL
 dw nfind.p ; a n xt/0
 db DUP ; a n xt xt

/home/arjuna/sf/htdocs/books/osdev/os.asm Sun Mar 28 21:12:07 2021 43

 db JUMPNZ, .opcode-$; a n xt

 ;*** not found, try to convert to number
 db DROP ; a n
 db FCALL
 dw tonumber.p ; adr/n flag
 db JUMPNZ, .number-$; adr/n
 ;*** not a number, push false flag and exit
 db LIT, 0 ; adr 0
 db EXIT

 ;*** is a number
 .number:
 ; n
 db LIT, 1 ; n 1 /flag=1 means number
 db EXIT

 .opcode:
 ;*** check if opcode
 ; a n xt
 db SWAP, DROP ; a xt
 db SWAP, DROP ; xt
 db DUP ; xt xt
 db FCALL ; does this address correspond to an opcode
 dw xttoop.p ; xt op|0
 db DUP ; xt op|0 op|0
 db JUMPZ, .proceedure-$; xt op
 ;*** is an opcode
 db SWAP, DROP ; op /drop execution token address
 db LIT, 2 ; op 2 /flag=2 means opcode
 db EXIT
 .proceedure:
 ;*** must be procedure,
 ; xt 0=op
 db DROP ; xt
 db LIT, 3 ; xt 3 /flag=3 means procedure
 db EXIT

 ; This is only used by decomp.p
 args.doc:
 ; db ’ (op -- flag) ’
 ; db ’ given a valid opcode return flag=1 if the ’
 ; db ’ the opcode requires a one byte ’
 ; db ’ argument or return flag=2 if the opcode requires ’
 ; db ’ a 2byte argument or flag=0 if no arguments required. ’
 ; dw $-args.doc
 args:
 dw tick.p
 db ’args’, 4
 args.p:
 ; lit, jump, jumpz, jumpnz, rloop
 db DUP ; op op
 db LIT, LIT ; op op op2
 db EQUALS ; op flag
 db JUMPT, .one-$; op

 db DUP ; op op
 db LIT, JUMP ; op op op2
 db EQUALS ; op flag
 db JUMPT, .one-$; op

 db DUP ; op op
 db LIT, JUMPZ ; op op op2
 db EQUALS ; op flag
 db JUMPT, .one-$; op

 db DUP ; op op
 db LIT, JUMPNZ ; op op op2
 db EQUALS ; op flag

 db JUMPT, .one-$; op

 db DUP ; op op
 db LIT, RLOOP ; op op op2
 db EQUALS ; op flag
 db JUMPT, .one-$; op

 ; litw, fcall, ljump,

 db DUP ; op op
 db LIT, LITW ; op op op2
 db EQUALS ; op flag
 db JUMPT, .two-$; op

 db DUP ; op op
 db LIT, FCALL ; op op op2
 db EQUALS ; op flag
 db JUMPT, .two-$; op

 db DUP ; op op
 db LIT, LJUMP ; op op op2
 db EQUALS ; op flag
 db JUMPT, .two-$; op

 .zero:
 db DROP
 db LIT, 0 ; 0
 db EXIT
 .one:
 db DROP
 db LIT, 1 ; 1
 db EXIT
 .two:
 db DROP
 db LIT, 2 ; 2
 db EXIT

 debug.doc:
 ; db ’ shows values for dp and here ’
 debug:
 dw args.p
 db ’debug’, 5
 debug.p:
 ; trying to see what is going on with dp and here
 db FCALL ; get dict compile point
 dw dp.p ; code*
 db FETCH ; dp
 ; show the code point
 db LIT, ’c’, EMIT
 db LIT, ’:’, EMIT
 db FCALL
 dw udot.p
 db LIT, ’ ’, EMIT
 db FCALL ; get here compile point
 dw here.p ;
 db LIT, ’h’, EMIT
 db LIT, ’:’, EMIT
 db FCALL
 dw udot.p
 db EXIT

 sync.doc:
 ; db ’ if dp is < here then make dp=here ’
 sync:
 dw debug.p
 db ’sync’, 4
 sync.p:
 db FCALL ; get dict compile point
 dw dp.p ; code*

/home/arjuna/sf/htdocs/books/osdev/os.asm Sun Mar 28 21:12:07 2021 44

 db FETCH ; dp
 db FCALL ; get here compile point
 dw here.p ; dp here
 db ULESSTHAN ; flag=T/F
 db JUMPF, .end-$;
 ;db LIT, ’*’, EMIT
 ;db LIT, ’<’, EMIT
 ;db LIT, ’*’, EMIT
 ;db LIT, ’ ’, EMIT
 db FCALL ; get here compile point
 dw here.p ; dp here
 db FCALL ; get dict compile point
 dw dp.p ; code*
 db STORE ; do: here dp !
 ;db FCALL ; get dict compile point
 ;dw debug.p ; code*
 db EXIT
 .end:
 db EXIT

 ccomma.doc:
 ; db ’ (n --) ’
 ; db ’ compile byte value n at next available byte ’
 ; b ’ as given by here.p ’
 ; dw $-ccomp.doc
 ccomma:
 dw sync.p
 db ’c,’, 2
 ccomma.p:
 ;*** compile single byte
 db FCALL ; /get compile point
 dw here.p ; n adr
 db CSTOREPLUS ; a+1
 db FCALL
 dw ishere.p ; /update compile point

 ; This crashes the system, not sure why...
 ;db FCALL
 ;dw sync.p ; /update compile point

 ; need to update dp if here is > than dp
 ; because custom defining words allocate data space in the
 ; dictionary.

 .end:
 db EXIT

 comma.doc:
 ; db ’ (n --) ’
 ; db ’ compile 2 byte value at next available space ’
 ; db ’ as given by the "here" variable ’
 ; db ’ code: : , here !+ ishere ; ’
 ; dw $-comma.doc
 comma:
 dw ccomma.p
 db ’,’, 1
 comma.p:
 db FCALL ; /get compile point
 dw here.p ; n adr
 db STOREPLUS ; a+2
 db FCALL
 dw ishere.p ; /set compile point to new address (a+2)
 db EXIT

 ; trying to get dictionary compile point to advance
 db FCALL ; /get dict compile point
 dw dp.p ; code*
 db FETCH ; dp
 db FCALL ; /get here compile point

 dw here.p ; dp here
 db INCR ; dp here+1
 ; check if dp < here+1
 db ULESSTHAN ; flag=T/F
 db JUMPF, .end-$;
 ;db FCALL
 ;dw dotstack.p
 ;db KEY
 ;db EMIT
 ;db FCALL
 ;dw codetohere.p
 .end:

 scompile.doc:
 ; db ’ (adr n --) ’
 ; db ’ compile the string at adr with length n to the ’
 ; b ’ current compile position as given by here ’
 ; dw $-wordcompile.doc
 scompile:
 dw comma.p
 db ’s,’, 2
 scompile.p:
 ; ad n
 ; if text length is 0 then do nothing.
 db DUP ; ad n n
 db JUMPNZ, .notzero-$; ad n
 db DROP, DROP ;
 db EXIT
 .notzero:
 ;*** n > 0
 db RON ; ad r: n /n is loop counter
 .nextchar:
 db CFETCHPLUS ; ad+1 c r: n
 db FCALL
 dw ccomma.p ; ad+1 r: n
 db RLOOP, .nextchar-$; ad+1 r: n-1
 db DROP ; r: 0
 db ROFF, DROP ; /get rid of rloop counter
 db EXIT

 ; standard core forth word
 ; probably could write this as source
 sliteral.doc:
 ; db ’ (comp: adr n --) (run: -- A n) ’
 ; db ’ compile the string at adr with length n to the ’
 ; db ’ current definition. At run-time push the address ’
 ; db ’ and length of the compiled string onto the stack ’
 ; dw $-sliteral.doc
 sliteral:
 dw scompile.p
 db ’sliteral’, IMMEDIATE | 8
 sliteral.p:

 ; ad n
 ; if text length is 0 then do nothing.
 db DUP ; ad n n
 db JUMPNZ, .notzero-$; ad n
 db DROP, DROP
 db EXIT
 .notzero:
 ; do other stuff here like compile
 ; code to push new A and n on stack at runtime
 ; ... compile jump
 db FCALL
 dw here.p ; ad n here
 ; adjust address by length of code about to be compiled
 db LIT, 8, PLUS ; ad n H+5
 db FCALL
 dw literal.p ; ad n

/home/arjuna/sf/htdocs/books/osdev/os.asm Sun Mar 28 21:12:07 2021 45

 db DUP ; ad n n
 db FCALL
 dw literal.p ; ad n
 ; compile a jump over the string
 db LIT, JUMP ; ad n op=jump
 db FCALL
 dw ccomma.p ; ad n
 ; calculate and compile jump offset (jump over string)
 db DUP ; ad n n
 db LIT, 2, PLUS ; ad n n+2
 db FCALL
 dw ccomma.p ; ad n
 ; copy the string to the current compile position
 db FCALL
 dw scompile.p
 db EXIT

 ; this doesnt always actually compile something (if it is
 ; an immediate word etc) so should be called something else
 ; like doword.p doitem.p
 itemcompile.doc:
 ; db ’ (#/opcode/xt flag --) ’
 ; db ’ compile number/opcode/xt at next available position ’
 ; b ’ as given by "here" variable where flag indicates ’
 ; db ’ the type of item. ’
 ; db ’ flag=1 literal number, 2 opcode, 3 procedure’
 ; dw $-compile.doc
 itemcompile:
 dw sliteral.p
 db ’item,’, 5
 itemcompile.p:
 ;*** 1=literal number eg: 1357, -10, 0
 ; n flag
 db DUP ; n flag flag
 db LIT, 1, EQUALS ; n flag 0/-1
 db JUMPZ, .notnumber-$; n flag

 ;*** check if state is immediate
 db FCALL
 dw state.p ; n flag adr
 db FETCH ; n flag state
 db JUMPT, .immediateNumber-$; n flag

 ;*** compile number
 db DROP ; n
 db LIT, LITW ; n op
 db FCALL ; /get compile point
 dw here.p ; n op adr
 db CSTOREPLUS ; n a+1
 db STOREPLUS ; a+3
 db FCALL
 dw ishere.p ; /update compile point
 db EXIT

 .immediateNumber: ; n flag
 ; do almost nothing because the number is already
 ; on the stack.
 db DROP ; n
 db EXIT

 .notnumber:
 ;*** check if is opcode
 ; n flag
 db DUP ; n flag flag
 db LIT, 2, EQUALS ; n flag 0/-1
 db JUMPZ, .notopcode-$; n flag

 ;*** check if state is immediate
 db FCALL

 dw state.p ; op flag adr
 db FETCH ; op flag state
 db JUMPT, .immediateOp-$; n flag

 ;*** 2 is opcode
 ;*** compile the bytecode to given address
 db DROP ; op
 ; why not just use ccomma.p ??
 db FCALL ; /get compile point
 dw here.p ; op adr
 db CSTOREPLUS ; adr+1 ’
 db FCALL ; /set compile point
 dw ishere.p ;
 db EXIT

 .immediateOp: ; op flag
 db DROP ; op
 db FCALL ;
 dw obuff.p ; op adr
 db CSTORE ;
 ; The second byte of obuff will always be an EXIT, so there
 ; is no need to write one (defined in bytecode)
 ; now actually execute the opcode
 db FCALL ;
 dw obuff.p ; adr
 db PCALL
 db EXIT

 .notopcode:
 ;*** check if procedure
 ; n flag
 db DUP ; n flag flag
 db LIT, 3, EQUALS ; n flag 0/-1
 db JUMPF, .error-$; n flag

 ;*** 3 procedure
 ; xt flag
 db DROP ; xt

 ;*** check if word is immediate
 db DUP ; xt xt
 db FCALL
 dw isimmediate.p ; xt flag
 db JUMPT, .immediate-$; xt

 ; bug! bug! This only applies to procedures, not
 ; opcodes, so even if state is immediate, opcodes and
 ; numbers will not be executed immediately. I think this
 ; is a problem.

 ;*** check if state is immediate
 ; xt
 db FCALL
 dw state.p ; xt adr
 db FETCH ; xt state
 db JUMPT, .immediate-$; xt

 ;*** neither word nor state is immediate, so compile
 db LIT, FCALL ; xt op
 db FCALL ; /get compile point
 dw here.p ; xt op adr
 db CSTOREPLUS ; xt adr+1
 db STOREPLUS ; adr+3
 db FCALL ; /set compile point
 dw ishere.p ;
 db EXIT

 ;*** immediate proc, execute, dont compile
 .immediate:

/home/arjuna/sf/htdocs/books/osdev/os.asm Sun Mar 28 21:12:07 2021 46

 db PCALL
 db EXIT

 .error:
 ; n flag
 db DROP, DROP
 db EXIT

 %if 0
 ; in source, so can delete this bytecode.
 %endif

 ; if n mod 20 = 0 wait for a key press. This
 ; is to provide basic paging. Could make this a
 ; deferred word. This is not used now
 waitkey.doc:
 ; db ’ (n --) ’
 waitkey:
 dw itemcompile.p
 db ’wk’, 2
 waitkey.p:
 db LIT, 18, DIVMOD, DROP ; remainder
 db JUMPNZ, .continue-$; r
 db LIT, 13, EMIT, LIT, 10, EMIT
 db LIT, ’˜’, EMIT
 ; wait for keypress
 db KEY, DROP ;
 .continue:
 db EXIT

 %if 0

 %endif

 ; The dictionary pointer is called "dp" in pforth and gforth
 dp.doc:
 ; db ’ (-- adr) ’
 ; db ’ puts on the stack a pointer to the next available byte’
 ; db ’ in the dictionary. ’
 ; dw $-dp.doc
 dp:
 dw waitkey.p
 db ’dp’, 2
 dp.p:
 db LITW
 dw dp.d
 db EXIT
 dp.d: dw dictionary

 codetohere.doc:
 ; db ’ (--) ’
 ; db ’ sets the dict compile point to the here var’
 ; dw $-codetohere.doc
 codetohere:
 dw dp.p
 db ’code>here’, 9
 codetohere.p:
 db FCALL
 dw here.p ; a
 db LITW
 dw dp.d ; a A
 db STORE ;
 db EXIT

 ; this is an important word because it is called by
 ; create, and therefore all defining words. In this implementation
 ; of forth it writes an exit to end of anon (here) and
 ; then executes the anon buffer. This is because this forth
 ; is a "compiling" forth, rather than an "interpreted" forth,

 ; so the default behavior is to compile even interactive commands
 heretocode.doc:
 ; db ’ (--) ’
 ; db ’ sets the here var to the dict compile point’
 ; dw $-codetohere.doc
 heretocode:
 dw codetohere.p
 db ’here>code’, 9
 heretocode.p:
 db LIT, EXIT ; op=exit
 db FCALL
 dw ccomma.p ; compile exit op to end of anon (at "here")
 db FCALL ; execute everything in the anon buffer
 dw anon.d
 ; need to "empty" the anon buffer after executing
 ; to avoid multiple unwanted calls
 db FCALL ; set here to start
 dw heretoanon.p
 db LIT, EXIT ; op=exit
 db FCALL
 dw ccomma.p ; compile EXIT op to start of anon (at "here")
 db LITW
 dw dp.d ; dp*
 db FETCH ; [>code]
 db LITW
 dw here.d ; [>code] a
 db STORE ;
 db EXIT

 ; Perhaps we should compile everything first to the "anon" buffer!!
 ; even new dictionary entries, and then copy them across to
 ; the dict. This seems to simplify the semantics of all this.

 ; No, the anon buffer will just be a pointer, not a buffer

 heretoanon.doc:
 ; db ’ (--) ’
 ; db ’ sets the compile point to the start of the anon buffer’
 ; dw $-heretoanon.doc
 heretoanon:
 dw heretocode.p
 db ’here>anon’, 9
 heretoanon.p:
 db LITW
 dw anon.d ; anon*
 db LITW
 dw here.d ; anon* here*
 db STORE ;
 db EXIT

 here.doc:
 ; db ’ (-- adr) ’
 ; db ’ puts on the stack the current compile position’
 ; db ’ in the code data space ’
 ; dw $-here.doc
 here:
 dw heretoanon.p
 db ’here’, 4
 here.p:
 db LITW
 dw here.d
 db FETCH
 db EXIT
 here.d: dw 0 ; pointer to next byte

 ishere.doc:
 ;db ’ (adr --) ’
 ;db ’ set position of next available byte’
 ;db ’ for compilation ("here" variable) to address adr’

/home/arjuna/sf/htdocs/books/osdev/os.asm Sun Mar 28 21:12:07 2021 47

 ;dw $-ishere.doc
 ishere:
 dw here.p
 db ’here!’, 5
 ishere.p:
 ; adr
 db DUP ; A A
 db LITW
 dw here.d ; A A b
 db STORE ; A

 ; this seems the right place to update the dictionary
 ; compile point, if necessary, but it is not working.
 db FCALL ;
 dw dp.p ; A C*
 db FETCH ; A C
 ; debug
 ;db TWODUP
 ;db FCALL
 ;dw udot.p
 ;db LIT, ’ ’, EMIT ;
 ;db FCALL
 ;dw udot.p
 ;db LIT, ’ ’, EMIT ;

 db ULESSTHAN ; t/f
 db JUMPT, .end-$
 ;db FCALL
 ;dw codetohere.p
 .end:
 db EXIT

 ; according to standard forth docs, this should not be modified by
 ; forth words except [] etc.
 ; [and] are be defined in source as
 ; : [1 state ! ; immediate
 ; :] 0 state ! ; immediate
 state.doc:
 ; db ’ (-- adr) ’
 ; db ’ pushes a pointer to current state (immediate or compile)’
 ; db ’ modified by [and] only (not by colon) ’
 ; db ’ state 0=normal/compile state 1=immediate ’
 ; dw $-state.doc
 state:
 dw ishere.p
 db ’state’, 5
 state.p:
 db LITW
 dw state.d
 db EXIT
 state.d: dw 0

 first.doc:
 ; db ’ (-- adr) ’
 ; db ’ address of first buffer (for loading source from disk)’
 ; dw $-first.doc
 first:
 dw state.p
 db ’first’, 5
 first.p:
 db LITW
 dw first.d
 db FETCH
 db EXIT
 ; near the end of this segment, just for testing.
 ; in reality should be just after the dictionary or stack
 ; remember distinction between disk map and ram memory map
 first.d: dw 50*1024

 blockone.doc:
 ; db ’ (-- adr) ’
 ; db ’ sector number of first source block (1K) on disk’
 ; db ’ each sector is 512 bytes in length. ’
 ; dw $-blockone.doc
 blockone:
 dw first.p
 db ’block1’, 6
 blockone.p:
 db LITW
 ; the 1+ is a hack because this is 1 short for some
 ; reason
 dw 1+(diskcode-$$)/512
 db EXIT

 ; "a" is top of stack. ie rightmost is last-on first-off
 copy.doc:
 ; db ’ (A n a --) ’
 ; db ’ copy n bytes from address A to address a ’
 ; db ’ this cannot deal with overlapping memory areas. ’
 ; dw $-copy.doc
 copy:
 dw blockone.p
 db ’copy’, 4
 copy.p:
 ; A n a
 db SWAP ; A a n
 db RON ; A a r: n /n loop counter
 db SWAP ; a A
 .again:
 db CFETCHPLUS ; a A+1 [A]
 ; db DUP, EMIT ; debug
 db SWAP ; a [A] A+1
 db RON ; a [A] r: n A+1
 db SWAP ; [A] a r: n A+1
 db CSTOREPLUS ; a+1 r: n A+1
 db ROFF ; a+1 A+1 r: n
 db RLOOP, .again-$; a+1 A+1 r: n-1
 db ROFF ; a+n A+n 0
 db DROP, DROP, DROP ;
 db EXIT

 ; Ans forth compare is (cA n cB m -- 0/-1/1)
 ; zero means strings are equal -1 1st is "smaller" 1 opposite
 ; I should rename this ncompare to get out of the way of
 ; the standard forth word. Or this should be called nstr=
 ; because Ans compare returns more than a flag.
 ncompare.doc:
 ; db ’ (a A n -- flag) ’
 ; db ’ given 2 pointers to strings a and A ’
 ; db ’ compare the 2 strings for n bytes ’
 ; db ’ and put -1=true on stack as flag if the strings are ’
 ; db ’ the same or false=0 on stack if the strings ’
 ; db ’ are different. ’
 ; dw $-ncompare.doc
 ncompare:
 dw copy.p
 db ’ncompare’, 8
 ncompare.p:
 ; a A n
 db RON ; a A r: n /n loop counter
 db CFETCHPLUS ; a A+1 [A]
 ; db DUP, EMIT ; debug
 db SWAP ; a [A] A+1
 db RON, RON ; a r: n A+1 [A]
 db CFETCHPLUS ; a+1 [a] r: n A+1 [A]
 ; db DUP, EMIT ; debug
 db ROFF ; a+1 [a] [A] r: n A+1
 db EQUALS ; a+1 flag r: n A+1

/home/arjuna/sf/htdocs/books/osdev/os.asm Sun Mar 28 21:12:07 2021 48

 db JUMPT, 10 ; a+1 r: n A+1
 db ROFF, ROFF ; a+1 A+1 n
 db DROP, DROP, DROP ; clear stacks
 db LIT, 0 ; flag=0 (false)
 db EXIT
 db ROFF ; a+1 A+1 r: n
 db RLOOP, -18 ; a+1 A+1 r: n-1
 db ROFF ; a+n A+n 0
 db DROP, DROP, DROP ; clear stacks
 db LIT, -1
 db EXIT

 type.doc:
 ; db ’ (adr n --) ’
 ; db ’ Prints out n number of characters starting ’
 ; db ’ at address adr. ’
 ; dw $-type.doc
 type:
 dw ncompare.p
 db ’type’, 4
 type.p:
 ; adr n
 ;*** if count zero, do nothing
 db DUP ; adr n n
 db JUMPNZ, .sometext-$; adr n
 db DROP, DROP ; clear data stack
 db EXIT
 .sometext:
 db RON ; adr r: n
 .nextchar:
 db CFETCHPLUS ; adr+1 c r: n
 db EMIT ; adr+1 r: n
 db RLOOP, .nextchar-$; adr+1 r: n-1
 db ROFF, DROP, DROP ; clear stacks
 db EXIT

 %if 0
 ; in source, so can delete this bytecode.
 %endif

 in.doc:
 ; db ’ (-- adr)
 ; db ’Puts on the stack the address of the ’
 ; db ’current input source/ buffer ’
 ; dw $-in.doc
 in:
 dw type.p
 db ’in’, 2
 in.p:
 db LITW
 dw in.d
 db EXIT
 in.d: dw 0 ; need to initialize
 in.length: dw 0 ; need to initialize

 term.doc:
 ; db ’ (-- adr)
 ; db ’Puts on the stack the address of the ’
 ; db ’user input buffer (terminal buffer). This’
 ; db ’is a common source for interpreting and ’
 ; db ’ compiling ’
 ; dw $-term.doc
 term:
 dw in.p
 db ’term’, 4
 term.p:
 db LITW
 dw term.d
 db EXIT

 term.d: times 128 db 0 ; counted buffer for user input

 dotin.doc:
 ; db ’ (--)
 ; db ’display the contents of the current input stream ’
 ; db ’or buffer. ’
 ; dw $-dotin.doc
 dotin:
 dw term.p
 db ’.in’, 3
 dotin.p:
 ; change this because the input stream is not always a
 ; counted string
 db LITW
 dw in.d ; adr
 db COUNT ; a+1 n
 db DUP ; a+1 n n
 db FCALL
 dw udot.p ; a+1 n
 db LIT, ’:’, EMIT ; a+1 n
 db FCALL
 dw type.p
 db EXIT
 ; : in.. in count dup u. sp type ;

 toin.doc:
 ; db ’ (-- adr n) ’
 ; db ’ put on stack parse position in input stream’
 ; db ’ and number of characters remaining in stream. ’
 ; db ’ This is used with parse etc’
 ; dw $-toin.doc
 ; was a strange bug with this link
 toin:
 dw dotin.p
 db ’>in’, 3
 toin.p:
 ;** need to remember that in.length, inp.d and in.d are
 ; pointers and need to be fetched before use... *p
 ;
 db LITW
 dw inp.d ; adr
 db FETCH ; >in
 db DUP ; >in >in
 db LITW
 dw in.d ; >in >in in.d
 db FETCH ; >in >in in
 db MINUS ; >in offset
 db LITW
 dw in.length ; >in offset adr
 db FETCH ; >in offset [in.length]
 db SWAP ; >in length offset
 db MINUS ; >in remainder
 ;db FCALL
 ;dw dotstack.p
 db EXIT

 ; a pointer to the current parse position in the input stream
 inp:
 dw toin.p
 db ’inp’, 3
 inp.p:
 db LITW
 dw inp.d ; A
 db EXIT
 inp.d: dw 0

 ; maybe call this setin or in! instore or in+
 ; why not just get adr and n from >word?

/home/arjuna/sf/htdocs/books/osdev/os.asm Sun Mar 28 21:12:07 2021 49

 inplus.doc:
 ; db ’ (adr n --) ’
 ; db ’ update word and parse position in input’
 ; db ’ where the start of the word is given by pointer’
 ; db ’ adr and the length of the word is n. The parse ’
 ; db ’ position will be adr+n after this call ’
 ; db ’ eg: pad resetin pad accept >in parse 2dup type ’
 ; db ’ atin >in .s etc’
 ; dw $-inplus.doc
 inplus:
 dw inp.p
 db ’in+’, 3
 inplus.p:
 ; probably should check here that the new
 ; parse position is not beyond the end
 ; of the input stream (length)
 ; adr n
 db SWAP, DUP ; n adr adr
 db LITW
 dw toword.d ; n adr adr a2
 db STORE ; n adr
 db PLUS ; n+adr
 db LITW
 dw inp.d ; n+adr ap
 db STORE ;
 db EXIT

 ; we dont actually use the toword.p proceedure.
 resetin.doc:
 ; db ’ (adr n --) ’
 ; db ’ set word and parse position to 0 in input’
 ; db ’ and set the input buffer to point to address ’
 ; db ’ adr and the stream length to n. ’
 ; db ’ set vars in.d in.length inp.d toword.d ’
 ; dw $-resetin.doc
 resetin:
 dw inplus.p
 db ’in0’, 3
 resetin.p:
 ; adr n
 db LITW
 dw in.length ; adr n in.length
 db STORE ; adr
 db DUP ; adr adr
 db LITW
 dw in.d ; adr adr in.d
 db STORE ; adr
 db DUP ; adr adr
 db LITW
 dw inp.d ; adr adr inp.d
 db STORE ; adr
 db LITW
 dw toword.d ; adr word.d
 db STORE ;
 db EXIT

 anon.doc:
 ; db ’ (-- adr)
 ; db ’Puts on the stack the address of the ’
 ; db ’buffer to hold anonymous definitions. This ’
 ; db ’contains compiled byte code for user input ’
 ; dw $-anon.doc
 anon:
 dw resetin.p
 db ’anon’, 4
 anon.p:
 db LITW
 dw anon.d
 db EXIT

 anon.d: times 128 db 0 ; compiled byte code

 ; Another idea instead of obuff is just to use memory after the
 ; last word in the dictionary. Eg:
 ; : obuff here 128 + ;
 ; But then, we would have to write an EXIT after every opcode
 obuff.doc:
 ; db ’ (-- adr)
 ; db ’ A buffer used to execute opcodes which have been ’
 ; db ’ called in immediate state.
 ; dw $-obuff.doc
 obuff:
 dw anon.p
 db ’obuff’, 5
 obuff.p:
 db LITW
 dw obuff.d
 db EXIT
 ; this will contain one opcode and EXIT, so only 2 bytes
 obuff.d:
 db NOOP, EXIT
 ; times 4 db 0 ;

 buff.doc:
 ; db ’ (-- adr)
 ; db ’ a testing buffer’
 ; dw $-buff.doc
 buff:
 dw obuff.p
 db ’buff’, 4
 buff.p:
 db LITW
 dw buff.d
 db EXIT
 buff.d: times 64 db 0

 drive.doc:
 ; db ’ (-- adr)
 ; db ’ a variable to hold virtual drive number ’
 dw buff.p
 db ’drive’, 5
 drive.p:
 db LITW
 dw drive.d ; ad
 db EXIT
 drive.d: db -1

 sides.doc:
 ; db ’ (-- adr)
 ; db ’ how many sides or platters a disk has. ’
 ; db ’ This information may be needed for disk reads. ’
 dw drive.p
 db ’sides’, 5
 sides.p:
 db LITW
 dw sides.d
 db EXIT
 sides.d: dw -1

 sectorspertrack.doc:
 ; db ’ (-- adr)
 ; db ’ How many sectors each track has. eg 18 for floppy ’
 ; db ’ This information may be needed for disk reads. ’
 dw sides.p
 db ’sectors’, 7
 sectorspertrack.p:
 db LITW
 dw sectorspertrack.d
 db EXIT

/home/arjuna/sf/htdocs/books/osdev/os.asm Sun Mar 28 21:12:07 2021 50

 sectorspertrack.d: dw -1

 lib.doc:
 ; db ’ (-- adr)
 ; db ’ some source code to load’
 ; dw $-lib.doc
 lib:
 dw sectorspertrack.p
 db ’lib’, 3
 lib.p:
 db LITW
 dw lib.d
 db EXIT
 lib.d:
 db lib.end-$-1 ; number of characters (used by source and type)
 ; block1 is the sector (512 byte block) of the first
 ; source code block (forth block=1K bytes) on disk
 ; actually parse and compile this source code
 ; use clock to time compile time

 db ’ 52 emit 116 emit 104 emit 33 emit 13 emit 10 emit’ ; message "4th!"
 db ’ clock ’
 ; load the 0 block, which loads all the others
 db ’ block1 2 first read drop first 1024 source ’
 db ’ clock ’
 ;db ’ timer cr .s ’

 lib.end:

 ; A

 onorder.doc:
 ; db ’ (A --)
 ; puts the vocabulary at A on top of the search order
 ; A points to the data field of the vocabulary. If there are
 ; 2 or less vocabs in s/o then the new one is appended, otherwise
 ; it replaces the top vocab in s/o
 onorder:
 dw lib.p
 db ’>s/o’, 4
 onorder.p:
 ; A
 db FCALL
 dw searchorder.p
 db DUP, FETCH
 ; check if |s/o| < 3 (Forth and Vlist are minimum wordlists)
 db DUP, LIT, 3, LESSTHAN
 ; A s/o |s/o| Flag
 db JUMPF, .morethantwo-$
 db INCR, OVER, STORE
 ; A s/o
 db DUP, FETCH
 ; A s/o |s/o|
 .morethantwo:
 ; A s/o |s/o|
 db TIMESTWO, PLUS
 ; A S’
 db STORE
 db EXIT
 ; or maybe if search order is less than 2 add, not replace

 ; A vocabulary. It may not even need a "head" namefield etc.
 ; when "create" runs it should update this link instead of
 ; last.d So, initially, before create has run, the last
 ; word in the dictionary (bytecode) is "last.p". To get a pointer
 ; we must do current @ @ or else FCALL, last.p
 ;
 ; This is the "Forth" vocabulary or wordlist. It is the most important
 ; along with "Vlist" (which is a list of wordlists) and is always

 ; available to be searched and executed with nfind.p (via wfind and find.so)
 ; But it only becomes available when
 ; ’ find.so is nfind
 ; is executed. This word ("Forth") will probably be in the Vlist
 ; dictionary/vocab/wordlist/namespace.

 forth.doc:
 ; db ’ (--)
 ; db ’A vocabulary. Makes Forth 1st in search order’
 forth:
 ;This will be zero when Forth and Vlist are the only
 ;initial wordlists in Vlist
 dw 0
 ;dw onorder.p
 db ’Forth’, 5
 forth.p:
 db JUMP, 6 ; jump to continue
 ; these nops are here because thats how vocabs will
 ; be compiled in source code. (When does> resets the
 ; code field, it leaves a gap)
 db NOOP, NOOP
 forth.d: dw last.p
 ; here we set forth.d as the value
 ; in searchorder.d+2.
 db LITW
 dw forth.d
 ; A

 db FCALL
 dw onorder.p
 db EXIT

 vlist.doc:
 ; db ’ (--)
 ; db ’A wordlist which is a list of wordlists !!’
 vlist:
 dw forth.p
 db ’Vlist’, 5
 vlist.p:
 db JUMP, 6 ; jump past datafield
 ; these nops are here because thats how vocabs will
 ; be compiled in source code. (When does> resets the
 ; code field, it leaves a gap)
 db NOOP, NOOP
 vlist.d: dw vlist.p
 db LITW
 dw vlist.d
 ; A
 db FCALL
 dw onorder.p
 db EXIT

 %if 0
 %endif

 current.doc:
 ; db ’ (-- adr)
 ; db ’Puts on the stack a pointer to current wordlist ’
 ; db ’for new definitions. The word "last" will just
 current:
 ;dw vlist.p
 ; vlist and forth vocabs are in the vlist dictionary/vocab
 dw onorder.p
 db ’current’, 7
 current.p:
 db LITW
 dw current.d ; ad
 db EXIT
 ; actually current.d needs to point to a wordlist datafield

/home/arjuna/sf/htdocs/books/osdev/os.asm Sun Mar 28 21:12:07 2021 51

 ; not to the actually last word in that list.. This is
 ; so "order" can display what is the current wordlist
 ; So last can do "current @ @" to actually get a pointer ??
 ; to the last word in the list, but we cant do "A last !"
 ; anymore?. This is confusing, but pointers to pointers always
 ; are.
 current.d: dw forth.d

 ; Ans forth says this buffer must be >= 8 cells
 searchorder.doc:
 ; db ’ (-- A / search order buffer *)’
 searchorder:
 dw current.p
 db ’s/o’, 3
 searchorder.p:
 db LITW
 dw searchorder.d
 db EXIT
 searchorder.d:
 ; initial s/o is just "Forth" vocab (in bytecode)
 dw 2, vlist.d, forth.d
 times 8 dw 0

 context.doc:
 ; db ’ (-- A)
 ; db ’Puts on the stack a pointer to the 1st wordlist in the ’
 ; db ’search order.’
 context:
 dw searchorder.p
 db ’context’, 7
 context.p:
 db FCALL
 dw searchorder.p
 db DUP, FETCH, TIMESTWO, PLUS
 db EXIT
 ; context.d: dw forth.d

 ; Last points to the last word of the "current" definition namespace
 ; (wordlist/vocabulary)
 ;
 ; What happens if wordlist is empty?
 ; Often called "latest"?
 last.doc:
 ; db ’ (-- adr)
 ; db ’Puts on the stack a pointer to (xt) address of the last word ’
 ; db ’in the dictionary. This changes when new words are ’
 ; db ’added via colon : definitions or other defining words ’
 last:
 dw context.p
 db ’last’, 4
 last.p:
 db LITW
 ;dw last.d ; ad
 dw current.d
 db FETCH
 db EXIT
 ;last.d: dw last.p

 code:

 db JUMP, .system-$

 .system:
 ; lib.p just loads the 1st block (block 0) which loads the
 ; other disk source code blocks and then compiles and runs
 ; ’shell’ which is the repl interpreter (normally called ’quit’
 ; in forth)
 db FCALL
 dw lib.p

 db COUNT ; source takes address + length
 db FCALL
 dw source.p
 db 0

 start:

 mov ax, cs ; cs is already correct (?!)
 mov ds, ax ; data segment

 ;*** save the (virtual) drive we have loaded
 ; code from. Handy for disk writes later

 ; have to set data segment DS first
 ; get the disk geometry parameters and save for use by
 ; read.x
 ; code from mike gonta. This fixed read problems where there
 ; are more than 18 sectors on a track etc.
 mov [drive.d], byte dl ;
 mov ah, 8
 int 13h
 ; jc .diskerror
 and cx, 3Fh
 mov [sectorspertrack.d], cx
 movzx dx, dh
 add dx, 1
 mov [sides.d], dx

 ; point es:di directly after the code and data segment
 ; i.e. after the 8 sectors (8 * 512 bytes)
 ; which contain code and data. We will use es:di
 ; as the return stack pointer. When
 ; a value is pushed on the return stack, the value
 ; is written to [es:di] and di is incremented by 2

 ; add ax, 256 ; 256 * 16 = 4096, 4K (8 sectors)
 ; put a gap of 4K between code and stacks for
 ; dictionary entries etc
 ;*** 8K code + 8K gap then rstack. But are the data and
 ; return stacks growing towards each other???

 ;add ax, 512 ; 512 * 16 = 8K
 add ax, 1024 ; 1024 * 16 = 16K
 mov es, ax ; using es:di as return stack pointer
 mov di, 0

 ; the calculations are as follows
 ; we have loaded 16 sectors = 16 * 512 bytes = 9162 bytes == 8K
 ; we want a data stack of size 4K
 ; (which is big) = 4094 bytes
 ; also we want a return stack of size 4K/8K
 ; for hefty recursive functions, although these
 ; huge sizes are not necessary.
 ; x86 hardware stack grows up or down? ...
 ; divide by 16 because that is how segment
 ; addressing works
 ; That is: if we multiply the number in ss or es
 ; or ds by 16, we get a absolute memory address

 ;*** ax is pointing to start of the rstack so
 ;*** add 4K more for data stack
 add ax, 256 ; 256*16=4K
 mov ss, ax ; a 4K stack here
 mov sp, 4096 ; set up the stack pointer

 push code
 call exec.x

 stayhere: jmp stayhere

/home/arjuna/sf/htdocs/books/osdev/os.asm Sun Mar 28 21:12:07 2021 52

 ;*** new words can be compiled here
 ;
 dictionary: dw 0

 ; Pad remainder of n(= n/2 K) sectors with 0s
 ; The number below (6,7,8 etc) only has to be as big
 ; as the dictionary.
 times (6*1024)-($-$$) db 0

 ; MEMORY MAP (may 2018)
 ; To avoid confusion, remember the clear distinction between
 ; the disk map (code and data on disk) and the ram memory map.
 ;
 ; need to clarify this memory map.
 ; This may change as code grows, but the idea is to keep code small
 ; The addresses below are segmented, so multiply the first part by
 ; 16 to get the real address.
 ;
 ; address contents
 ; ------- --------
 ; 1000:0000 8K of code and data, including the dictionary
 ; and any new words defined by colon :
 ; ??:0000 8K return stack pointed to by es:di
 ; ??:0000 4K data stack pointed to by ss:sp
 ;

 ; this is silly, can erase memory without writing to disk
 ; in fact, is there any need to erase stack memory?
 ; times 4096 db 0

 ;*** some text/forth code at sector ? which we can load
 ;*** with source.p or with load opcode
 diskcode:

 ; can load this with "block1 2 first read first 1024 source"
 block1:

 ; see os.sed for a proprocessing sed script.
 ; This script allows us to write multiline
 ; forth source code without the "db ’ " guff.

 %if 0 ; code{

 ; switch to video mode 16 (x86 bios colours, no cursor), not portable
 ; or text mode 3
 3 vid

 ; standard ’ tick (?). There is another word TICK which works
 ; a bit differently since it returns a flag as well indicating
 ; if the word is a number, opcode or fcall.

 ; But really this should just be the same as [’] I think,
 ; otherwise it executes before other commands interactively.
 : ’ wparse nfind ; imm

 ; if call, is not immediate then this gets simpler
 ; does it need to be immediate?

 ; ans forth ’postpone’ word. Compiles a call to a word, even if
 ; it is immediate. This is used in words like [char] but is tricky
 ; to think about somethimes.
 : post wparse nfind ’ call, call, ; imm

 ; a ’ to use in colon defs
 : [’] wparse nfind post literal ; imm

 ; makes all words execute immediately until] ’
 ; This word sets the state variable to true (immediate) ’

 ; so that all words parsed will execute immediately ’
 ; without being compiled. ’
 : [1 state ! ; imm

 ; This word sets the state variable to false (normal)
 ; so that all words parsed will be compiled unless they
 ; have their immediate control bit set.
 :] 0 state ! ; imm

 ; Put the value of the following character on the stack
 : char wparse drop c@ ; imm
 ; standard [char]
 : [char] post char post literal ; imm

 ; Hopefully this will save space
 ; 2r> is an opcode now (19 mar 2019)
 ; : 2R> r> r> swap r> swap >r ;

 ; comments like (--)
 : ([char]) parse 2drop ; imm

 ; integer division
 : / /mod swap drop ;

 ; type a space
 : space (--) 32 emit ;

 : count c@+ ;

 ; classic forth variables.
 ; The does> is a hack because there is a bug in using create in
 ; defining words. does> forces the dp point to be updated to ’here’
 : var create 0 , does> ; imm
 ; definition of CONSTANT
 : con create , does> @ ; imm

 ; a simple ’block’ word that just reads block n into first buffer
 ; in a proper implementation this would use ’buffer’ to flush
 ; code to disk and then read the block. Also, the block would only
 ; be read if it wasnt already loaded to ram (at ’first’)
 ; ans blk variable
 ; Maybe blk is only updated in the "load" word according to
 ; ansi forth?
 var blk
 : block
 ; (n -- A)
 dup blk !
 2* block1 + 2 first read drop first ;

 ; The last block loaded. cryptic name because of disk block
 ; space limitations.
 var lb

 ; perhaps source and load should return a flag indicating
 ; success or failure. This may allow us to catch errors
 ; But have to dig down to "inputcompile" .
 : load (n --) dup lb ! dup . block 1024 source ;

 ; get the loop counter, needed for thru, called I in ansi forth
 ;: ii r> r> r> dup >r swap >r swap >r ;
 : ii r> r> dup >r swap >r ;

 ;: compile> wparse tick item, ; imm

 ; lookup a word and return the opcode or zero
 : op’ wparse nfind xt>op ; imm
 ; use this op’ in : defs
 : [op’] post op’ post literal ; imm

/home/arjuna/sf/htdocs/books/osdev/os.asm Sun Mar 28 21:12:07 2021 53

 ; These words should be called op: and [op:] because
 ; comma words eg , c, get their argument from the stack
 ; not from the input stream.
 ;

 ; use this in definitions
 ; This seems archane: And we need a simpler syntax
 ; for compiling FCALLs eg [call:] <name>

 ; This is working!
 ; Another archane word. Compile an fcall to a word
 : [call:] post [’] [’] call, post call, ; imm

 ; more elaborate versions of [op:]
 ; : [op:] post op’ post literal ’ c, literal post call, ; imm
 ;: [op:] post [op’] ’ c, literal post call, ; imm
 ; : [op:] post [op’] [’] c, post call, ; imm

 : [op:] post [op’] [call:] c, ; imm

 ; (run: limit start -- r: start limit)
 ; (comp: -- ’here’)
 ; At run-time: puts start and limit on return stack
 ; at compile time: marks a jump back address for loop etc
 ; the jump address is left on the data stack
 ; Source code do
 ;: do [op’] >r dup c, c, here ; imm

 ; The code below seems to be working. The phrase "[op:] >r"
 ; will compile the opcode ">r" when "do" runs (not when it
 ; compiles. So this is a little like a double "post"

 ; compile >r >r to get loop parameters on the return stack
 ; and then leave jump-back position on the stack for "loop" to use.

 ; swapped order of params (counter ontop of return stack)
 ;: do [op:] swap [op:] >r [op:] >r here ; imm
 ; 2>r is an opcode now! So can do "[op:] 2>r"
 : do [op:] swap [op:] 2>r here ; imm

 ; increment and check the loop parameters at runtime
 ; for swapped params to the 1+ a bit earlier. And "ii" will
 ; become smaller too.

 ;: (check) r> r> r> 1+ 2dup >r >r = swap >r ;
 ; could combine into one function (loop), that is, drop the
 ; rstack params if limit is reached.
 ; : (check) r> r> 1+ r> 2dup >r >r = swap >r ;
 : (check) 2r> 1+ r> 2dup 2>r = swap >r ;

 ; 2drop is an opcode now.
 : (clean) r> 2r> 2drop >r ;

 : Loop
 ;(short jump loop)
 [call:] (check)
 [op:] jumpz
 here 1- - c,
 [call:] (clean) ; imm

 ; a "Forth Inc" word to load blocks x to y
 ; (x y --) ... load blocks x to y
 ; here we need to chekc if x=y etc
 : thru
 ; (a b --)
 ; there is no if yet!!
 ; 2dup = if 2drop exit fi
 swap do ii load Loop ;

 ; load required blocks. These phrases (not defining a word) seem
 ; to get executed last, no matter where they are in the block.
 1 9 thru
 ;1 load 2 load 3 load

 clock

 ; load the shell block (defines shell and starts it)
 33 load

 ; pad remainder of 1st disk block with zeros
 times 1*1024-($-block1) db 0
 ; block1:

 ; like the old figforth variables. usage: 31415 var pi
 : Var create , does> ; imm

 ; standard forth comment
 : \ 10 parse 2drop ; imm

 ; This is working!
 ; Another archane word. Compile an fcall to a word
 : [call:] post [’] [’] call, post call, ; imm

 ; (comp: -- A)
 ; marks a jump back address for until/again etc’
 ; the jump address is left on the data stack ’
 : begin here ; imm

 ; source version (ljump long relative jumps)
 ; (comp: jb --) (run: --)
 ; jumps back at runtime. At compile time
 ; gets the absolute jump-back address from the data stack and compiles
 ; it a relative ljump.
 : again
 ; A (Address of compiled ’begin’)
 ; compile "ljump" at current compile point
 [op:] ljump here 1- - , ; imm
 ; stack-progression is:
 ; A here
 ; A here-1 /align to ljump instruction
 ; A-here-1
 ; compile relative ljump address (2 bytes)

 ; compile an execution token, either as an opcode or else
 ; as an FCALL
 ; : xt, dup [’] nop 1+ < if , else ;

 ; Below a standard forth "if" word. Used to be in byte code.
 ; Need to use a jumpnz/ljump combination here
 ;
 ; compiles the "jumpnz" opcode and then a dummy relative
 ; jump address (+2). This address will be replaced with the
 ; real relative jump address when "fi" runs.
 ; I think I will have to use ljumps here to overcome the
 ; +/- 128 byte limit
 ; At runtime, if the value n on the stack is zero ’
 ; skip statements after this until next "fi" ’
 ; compiles a jumpzero and puts the current ’
 ; address on the data stack. The "fi" command consumes ’
 ; that address ’

 ; A new version of if using long jumps. This wont work until
 ; fi and else are adjusted to compile 2 byte target addresses.
 ; eg: jumpnz 4, ljump 2
 ; where the "2" will be replaced by the real target when
 ; "else" or "fi" is encountered. The argument to ljump is 2bytes long
 : if

/home/arjuna/sf/htdocs/books/osdev/os.asm Sun Mar 28 21:12:07 2021 54

 ; (runtime: n -- /ctime: -- A /compile a conditional long jump *)
 ; compile "JUMPNZ, 5".
 ;[op’] jumpnz c,
 [op:] jumpnz 5 c,
 ; compile "LJUMP, 2"
 ; The 2 (2 bytes will be replaced with a
 ; real target when "else" or "fi" executes.
 [op:] ljump
 ; Put current compilation position on the stack to be used
 ; by next "else" or "fi"
 here
 2 , ; imm

 : else
 ; compile "LJUMP, 2". The 2 will be replaced by "fi"
 [op:] ljump
 ; leave H on stack for fi to use
 here
 ; temporary jump-to-fi target
 2 ,
 ; Aj H
 swap dup here
 ; H Aj Aj H
 swap - 1+
 swap ! ; imm

 ; A new version of fi using long jumps
 ; run-time: (--) compile-time: (A --)
 ; At compile time obtains the correct jump
 ; address from the data stack and compiles the correct
 ; target address into a previously compile "if" clause.
 ; This word is called "then" in traditional forths.
 : fi
 dup here
 ; A A H
 swap - 1+
 ; A H-A+1
 swap ! ; imm

 ; just testing new if/else/fi
 ; : ff iff 65 emit eelse 64 emit ffi ;
 ;)

 ; This defer cannot handle opcodes, which is not good. See
 ; another implementation of defer below.
 ;
 ; An alternative is to use a less elegant, but effective, method
 ; of actually compiling code into the word with "is"
 ; For an opcode we compile in OP, EXIT and for a normal word
 ; we compile FCALL, <address>, EXIT. op/exit is 2 bytes, and
 ; fcall/address/exit is 4 bytes. So deferred words will
 ; take up more room this way.
 ; standardish defer word. If the deferred word is not
 ; initialised then it should just do nothing. eg
 ; : defer create 0 , does> @ dup if pcall else drop fi ; imm
 : Defer create 0 , does> @ pcall ; imm
 ; The "4 +" below is a cludge. In my implementation
 ; of does> the data field starts 4 bytes after the execution address.
 ; This is because "create" adds code to push parameter field address
 ; onto the stack, and does> then modifies that code. But there
 ; should be a more elegant way to do this.
 ;
 ; usage:
 ; defer all ’ ls is all
 ; or: : print [’] printer is type ;
 ; Also, "is" should check that name and xt are valid
 : Is
 ;(xt -- / set xt for <name> to xt *)
 wparse nfind 4 + ! ; imm

 ; a new defer, to work with opcodes, compile a new name
 ; and then an exit and then allow 3 more bytes
 ; The -4 here+ should reset the code put in by "create"
 ; to push the data/parameter field address onto the stack.
 ; But there should be a more elegant way to do this, I think
 ;

 ; Another way is to define Defer with a buffer: ??
 : defer create reset [op:] exit 0 , 0 c, code>here ; imm

 ; This is much more laborious than the "does>" style defer/is
 ; but it can handle opcodes, which is important I think.
 ; We dont have any good words for compiling ops/calls to
 ; any memory (only to "here/dp") eg:
 ; [op:mem] (A <name> --) etc

 ; either compile OP+EXIT or FCALL+<address>+EXIT
 : is wparse nfind
 ; XT xt
 swap dup
 ; xt XT XT
 xt>op dup if
 ; xt XT op
 swap drop
 ; xt op
 swap c!+
 ; xt+1
 else
 ; xt XT 0
 drop swap
 ; XT xt
 [op’] fcall swap
 c!+
 ; XT xt+1
 !+
 fi
 ; xt’
 [op’] exit swap c! ; imm

 ; allow us to use different versions of accept
 defer accept
 ; ’ accept.byte is accept

 ; so I dont have to type so much
 : A accept ;

 ; type a newline
 : cr 13 emit 10 emit ;

 : xt+
 ; (xt - xt’ / get exec address of next word in dict *)
 1-
 ; xt’ n
 rcount drop 1- 1-
 ; xt’-2
 @ ;

 ; ans standard tuck. This can be a handy way to save a value
 ; for later processing. Could be an opcode
 : tuck (a b -- b a b)
 swap 2dup drop ;

 ; get a copy of topmost return stack item. We need to dig
 ; under the word return pointer. Probably should be opcode.
 ; This is now an opcode, as "r@"
 : R@
 ; (-- n) (R: n -- n)

/home/arjuna/sf/htdocs/books/osdev/os.asm Sun Mar 28 21:12:07 2021 55

 r> r> dup >r swap >r ;

 ; just for testing long jump if
 ; : iff 0 if 60 emit fi ;
 ; see iff

 ; determine the used size of a block by searching for the 1st
 ; zero byte. Use like this: "first bsize"
 ; : bsize dup begin c@+ 0 = until swap - ;

 ; Increment a counter variable by 1 and leave the new value
 ; on the stack, because often we want to use the counter value
 ; immediately afterwards. This is like C
 ; nn++ (in forth: nn ++)

 : ++ (A -- [A]+1 / increment counter *)
 dup dup @
 ; A A n
 1+ swap
 ; A n+1 A
 ! @ ;
 ; n+1

 : -- (A -- [A]-1 / minus 1 value at A *)
 dup dup @ 1- swap ! @ ;

 ; counter variables
 var nn
 var ll

 ; an implementation of the standard forth word ’I’ which gets
 ; a copy of the loop counter onto the data stack. We have to
 ; ’dig’ under the current word return pointer which is the
 ; current top of the return stack and also under the loop limit
 ; parameter

 ; : ii++ r> r> r> 1+ >r >r >r ;

 ; use this before ’exiting’ from a do loop.
 : unloop r> 2r> 2drop >r ;

 ; discard loop parameters and continue execution after next ’loop’
 ; : leave (--) ;

 ; just testing quote preprocessing by os.sed
 ; : quote char " char ’ char " ;

 ;: [op:] wparse nfind xt>op literal c, ; imm

 ; pad remainder of 2nd block with zeros
 times 2*1024-($-block1) db 0
 ; block2
 ; 3rd disk block

 ; An alias for [char] that is shorter
 ; : c: post char post literal ; imm
 : c: post [char] ; imm

 ; by putting for/next initial value on the stack twice
 ; (and only decrementing one copy), we can use the same
 ; "unloop", "ii" as do/loop. Also we can use a word ii’
 ; which is a reverse counter for for/next
 : for (run: u -- / iterate u times *)
 [op:] dup [op:] >r [op:] >r here ; imm

 : next (short jump back to "for")
 [op:] rloop
 here 1- - c,
 [call:] (clean) ; imm

 ; (comp: ’here’ --) (run: --)
 ; at run-time: takes loop parameters off stack
 ; increments the iterator, checks if it is = to limit
 ; and jumps back to DO if not. If = then it removes loop
 ; parameters from the stack and discards them.
 ; at compile-time: get begin address from data
 ; stack and compiles a rloop jump
 ; back to begin (address on data stack).

 : loop (long jump loop)
 [call:] (check)
 [op:] jumpnz 5 c,
 [op:] ljump
 here 1- - ,
 [call:] (clean) ; imm

 ; a modulus operator
 : mod /mod drop ;

 ; the last block for searching etc.
 var final 84 final !

 ; parse and find words, more or less working
 ; : findwords term accept term count in0
 ; begin
 ; wparse 2dup type space find dup u. space
 ; 0 =
 ; until ;

 ; frees a buffer (eg first) and writes old contents to disk if
 ; necessary.

 ;: buffer (n -- adr //to do!) ;

 : todo! nop ;

 ; logical not! same as 0=
 : not (n -- f)
 ; leave true [1] if n=0, else leave false [0]
 if 0 else 1 fi ;

 ; 0= is now an opcode
 : zero= (n -- f)
 ; leave true [1] if n=0, else leave false [0]
 if 0 else 1 fi ;

 ; saves the current buffer (first) to block number n on disk
 : save (n -- flag=-1/0/1) 2* block1 + 2 first write ;

 ; advance the input parse position by 1 character
 : in++ inp ++ drop ;

 ; standard s" word. The in++ skips over the leading space
 : s" [char] " in++ parse post sliteral ; imm

 ; An fcall <type> will get compiled when ." is run,
 ; not when it is compiled. This is an important technique
 ; It is like a "double postpone"
 ;
 ; more elaborate versions of ." ...
 ;: ." post s" [wparse type nfind] literal post call, ; imm
 ;: ." post s" [’ type] literal post call, ; imm
 ;: ." post s" ’ type literal post call, ; imm
 ;: ." post s" [’] type post call, ; imm

 : ." post s" [call:] type ; imm

 ; a convenience to get rid of stuff on the stack

/home/arjuna/sf/htdocs/books/osdev/os.asm Sun Mar 28 21:12:07 2021 56

 ; this is an opcode now (2drop)
 : 2DROP (a b --) drop drop ;

 : 4drop (a b c d --) 2drop 2drop ;

 ; A new and improved "cmove" (see block 2) that is
 ; correct even when data areas overlap
 ; here use if A > B then copy from low to high
 ; but if B > A then copy from high to low. This will be used
 ; when the backspace key is pressed in an editor

 ; Actually! forth.inc forths use cmove and cmove>
 ; cmove> copies to overlapping address in higher memory.
 ; Having 2 words speeds up the copy. The programmer has to
 ; decide if the memory areas overlap and if the target is
 ; in higher mem. If so, use cmove>
 : cmove (A B n -- / copy n bytes from A to B *)
 ; A B n
 ; If n==0 then crash out.
 dup 0 = if drop 2drop exit fi
 ; A B n
 >r 2dup
 ; A B A B r: n
 ; if A=B then nothing to do
 = if r> drop 2drop exit fi
 ; A B r: n
 2dup < if
 ; A < B
 ; A B r: n
 r@ + 1- swap r@ + 1- swap
 ; A+n-1 B+n-1
 r> 0 do
 ; A+n-1 B+n-1
 ;>r c@- r>
 ; c@-
 >r
 dup c@ swap 1- swap
 r>
 ; A+n-1 c B+n
 ; this is c!-
 dup >r c! r> 1-
 ; A+n-1 B+n-1
 loop 2drop
 else
 ; A > B this works for overlapping data areas
 ; A B r: n
 r> 0 do
 ; A B
 >r c@+ r>
 ; A+1 c B
 c!+
 ; A+1 B+1
 loop 2drop
 fi ;

 : c> post [char] [op:] emit ; imm

 times 3*1024-($-block1) db 0
 ; start block3:

 ; the 2-2+ trick is to avoid the loop parameters for
 ; for/next which are not interesting, or else use begin/end
 ; with a counter. Cant call this .r because that is right
 ; justified print in standard forth.
 : .rs (show return stack)
 ;rdepth c: < emit u. c: > emit
 rdepth 2 - for ii 2 + rpick u. space next ;

 ; handy to compile an opcode by name eg: op: fcall
 ; this can be handy for opcodes that arent normally compiled.
 ; eg jump, jumpz, rloop etc
 ; we may also need code that compiles an opcode at runtime
 : op: wparse nfind xt>op c, ; imm

 ; a non standard type of comment that reads until a new line
 ; this should be EOL not 10 for portability
 : ./ 10 parse 2drop ; imm

 ; a dodgy opcode test based on being less than the xt of "nop"
 ; in the future this will not be true because new opcodes can
 ; be added to the system, probably in their own namespace/wordlist.
 ; just an alias for xt>op
 : opxt? (xt -- F) xt>op ;

 ; The simplest dotxt version
 ; : .xt (A -- / print wordname of xt *)
 ; 1- rcount type ;

 ; : bcode (xt -- F)
 ; check if xt is bytecode
 ;dup opxt? IF drop 0 exit FI
 ;last < IF 0 exit FI nop ;

 : .xt (A -- / print colour coded xt name *)
 dup 0= if 13 fg ." [xt=0]" 7 fg drop exit fi
 ; light blue for normal words
 11 fg
 ; green if words are defined in bytecode
 dup [’] last < if 10 fg fi
 ; Immediate words are red
 dup imm? if 12 fg fi
 ; here make word xt>op which leaves flag
 ; Opcodes are brown
 dup opxt? if 6 fg fi
 1- rcount type
 ; return colour to normal
 7 fg ;

 ; if0 (long jump), does consume top stack item
 : if0 [op:] jumpz 5 c, [op:] ljump here 2 , ; imm

 ; can make a simple alias for this immediate word like
 : ifnot post if0 ; imm

 ; this conserves the current base
 : .hex (n -- / display top-of-stack as unsigned hexadecimal *)
 base @ swap 16 base c! u.
 ; restore original base
 base ! ;

 ; fill u bytes of memory with 0 starting at addr
 : erase (A u --)
 0 do 0 c!+ loop drop ;

 ; fill u bytes of memory with byte b starting at addr
 : fill (A u b --)
 swap 0 do dup c!+ loop 2drop ;

 : dumpw (A u -- / display u words of data *)
 ; A u
 0 do
 ii
 ; A ii
 ; print memory address and newline every 8 chars
 8 mod if0
 cr 11 fg dup u. ." :" 15 fg
 fi

/home/arjuna/sf/htdocs/books/osdev/os.asm Sun Mar 28 21:12:07 2021 57

 ; A
 @+ u. space
 ; A+2
 loop drop ;

 ; allocate u bytes of data-space, beginning at the next available
 ; location. Normally used immediately after "create".
 : allot (n --)
 here + here! ;

 ; allot data space and initialize to 0
 : allot0 (n --)
 here swap 2dup erase + here! ;

 ; create a data buffer <name> in the dictionary of n bytes
 : buffer: (n --)
 create allot0 does> ; imm

 ; convert from n to cells (in this case 2 bytes)
 : cells (n --) 2* ;

 ; print some machine info
 ;: mach (--)
 ; machine count 2dup ." name: " type cr
 ; + count ." signature: " type cr ;

 ; print the machine name
 : mname (--) machine count type ;

 times 4*1024-($-block1) db 0
 ; block4:

 ; this is an opcode now
 : ROT (a b c -- b c a)
 >r swap r> swap ;

 : -rot (a b c -- c a b) rot rot ;

 ; some forths just define pad like this, it is not
 ; a permanent buffer
 : pad (-- A / temporary text buffer *)
 dp @ 128 + ;

 ; gforth "fi"
 ; : endif post fi ; imm
 ; standard forth then
 : then post fi ; imm

 ; put a space on the stack
 : bl 32 ;

 : 3drop 2drop drop ;
 ; an old synonym for negate
 : minus neg ;
 : negate neg ;

 : here+ (n --)
 here + here! ;

 : abs (n -- +n / absolute value of n *)
 dup 0 < if negate fi ;

 ; true if x >= y otherwise false
 : >= (x y -- true=1/false=0) < not ;

 ; simplest ?
 : > swap < ;

 : <= 2dup < if 2drop 1 exit fi = ;

 ; tests if string at A (length n) starts with string at P (length m)
 : prefix (A n P m -- true=1/false=0)
 swap >r 2dup
 ; A n m n m r: P
 ; if length of string < prefix then false
 < if r> 4drop 0 exit fi
 ; A n m r: P
 swap drop r> swap
 ; A P m
 ncompare ;
 ; 0=false=different

 ; a double swap, needed for double numbers and convenience.
 ; But this is slow in source, better as an opcode, no?
 : 2swap (a b x y -- x y a b)
 >r swap
 ; a x b r: y
 >r swap
 ; x a r: y b
 r> r> swap
 ; x a y b
 >r swap
 ; x y a r: b
 r> ;

 ; what you would expect
 : 4dup
 ; a b c d
 2>r 2dup
 ; a b a b r: c d
 2r> 2dup 2>r
 ; a b a b c d r: c d
 2swap
 ; a b c d a b r: c d
 2r> ;

 ; Actually the code below should return (A n 0) if the
 ; string is not found, but it is not doing this.
 ; standard form
 : search (A n P m -- A’ m flag / search for text in a string)
 ; A n P m
 begin
 2swap dup 0 =
 ; P m A’ n’ flag .. n==0 so no more string to search
 ; A n false (original string, length flag)
 if 2drop 0 exit fi
 2swap
 ; A’ n’ P m
 swap >r 2dup
 ; A’ n’ m n’ m r: P
 ; if length of string < substring then leave A n false
 < if
 ; A’ n’ m r: P
 2drop r> drop
 ; A’
 0 0
 ; A’ 0 0
 exit
 fi
 ; A’ n’ m r: P
 r> swap 4dup
 ; A’ n’ P m A’ n’ P m
 prefix
 ; A’ n’ P m flag
 ; return: (found address, length, true) if prefix is true
 if
 ; A’ n’ P m
 swap drop

/home/arjuna/sf/htdocs/books/osdev/os.asm Sun Mar 28 21:12:07 2021 58

 ; A’ n’ m
 swap drop 1
 ; A’ m 1
 exit
 fi
 ; A n P m
 2>r
 ; A n r: m P
 1- swap 1+ swap
 ; A+1 n-1
 2r>
 ; A+1 n-1 P m
 again ;
 ; 0=false=different

 times 5*1024-($-block1) db 0
 ; block5

 ; (run: n -- / jumps back to begin if n is true, non-zero *)
 ; until consumes 1 item on the top of the stack.
 ; (compile: get "begin" address from data
 ; stack and compile a conditional relative jump
 ; back to begin.
 : until (long jump "until" *)
 [op:] jumpnz 5 c,
 [op:] ljump
 here 1- - , ; imm

 : within (n a b -- F / true if a<=n<b else false [ans94] *)
 2>r dup r> 1- swap
 ; n a-1 n
 < swap
 ; t/f n
 r> <
 ; t/f t/f
 and ;

 : xyemit (c x y -- / print char c at [x,y], reset pos *)
 getxy 2swap atxy
 ; c x y
 2>r emit 2r>
 atxy ;

 : dump (A n -- / display n bytes of memory *)
 ; A n
 0 do
 ; A’
 ; print 12 bytes per line
 ii 12 mod 0 = if
 cr dup 6 fg .hex [char] : emit 3 fg
 fi
 c@+ dup
 ; A+1 c c
 .hex
 ; A+1 c
 ; if not printable, just print "."
 dup 32 127 within
 ; A+1 c F
 0 = if drop [char] . fi
 getxy swap drop
 ; A+1 c y
 ; calculate cursor position for asci chars
 ii 12 mod 60 +
 ; A+1 c y [ii mod 12]+50
 swap 14 fg xyemit 3 fg
 space
 loop cr ;

 ; search for all words in the dictionary starting

 ; with prefix. Improved logic with 2swap.

 ; search for all words in the dictionary containing
 ; a string. Improved logic with 2swap. Replace "search"
 ; with "prefix" to only see words starting with string

 ; If a word is immediate, display it "red", if a word is
 ; an opcode, display it "brown"

 ; This needs to be modified for multiple wordlists
 : s/ (--)
 ; initialise counter
 0 nn !
 wparse 2dup
 ; P m P m
 last @
 ; P m P m A
 begin
 dup >r
 ; P m P m A r: A
 1- rcount
 ; P m P m S n r: A
 2swap
 ; P m S n P m r: A
 search
 ; P m S’ m flag r: A
 ; Discard the found address and length
 >r 2drop r>
 ; P m flag r: A
 if
 ; print words 8 to a line
 nn ++ 8 mod 0 = if cr fi
 ; display the name of the word
 r> dup .xt space >r
 fi
 ; P m r: A
 2dup r>
 ; P m P m A
 xt+ dup
 ; P m P m A+ A+
 0 =
 until 4drop drop ; imm

 ; source version of type, ignore asci 13 in source but emit
 ; a 13 when 10 found
 : type (A n --)
 ; string length is 0 so do nothing
 dup 0 = if 2drop exit fi
 0 do
 c@+
 ; A’+1 n
 ; ignore \r = asci 13. Below we use the trick of putting
 ; a dummy 0 on the stack to get an if/elseif/elseif/fi effect
 dup 13 = if drop 0 fi
 dup 10 = if drop 0 cr fi
 dup if emit else drop fi
 loop drop ;

 ; type a string in quotes
 : qtype c> " type c> " ;
 : btype c> (type c>) ;

 times 6*1024-($-block1) db 0

 : .code
 dup [op’] nop 1+ u< not if
 u. ." ??" exit
 fi
 2* optable + @

/home/arjuna/sf/htdocs/books/osdev/os.asm Sun Mar 28 21:12:07 2021 59

 1- rcount type ;

 : tint create c, does> @ fg ; imm
 [1 tint .blue 2 tint .green 10 tint .lgreen 7 tint .white
 3 tint .lblue
 4 tint .red 6 tint .brown 0 tint .black
 12 tint .lred 13 tint .pink 14 tint .yellow]

 ; (A --)
 ; receive a line of input from the terminal ’
 ; and store it as a counted string in the buffer. ’
 : accept.zero
 ;(a -- / get text with no editing *)
 dup 1+ dup
 ; A A+1 A+1
 begin
 key dup
 ; A A+1 A+n k k
 13 = if drop swap - swap c! exit fi
 dup emit
 ; A A+1 A+n k
 swap c!+
 ; A A+1 A+n+1
 again ;

 ’ accept.zero is accept

 ; ans forth word, add n to [A] and store at A
 ; eforth definition. Very similar name to !+ but very
 ; different meaning.
 : +! (n A --) swap over @ + swap ! ;
 ;: +! (n A --) 2dup @ + swap ! drop ;

 ; the opposite of xt+, finds the previous definition in
 ; the dictionary, so goes in the opposite direction from
 ; the linked list. If there are multiple wordlists, then
 ; we cant use xt- to find the compiled size of a word (the
 ; wordlists are interleaved.
 : xt- (xt -- prev.xt)
 last @
 ; xt last
 begin
 ; xt a
 dup >r
 ; xt a r: a
 xt+
 ; xt a+ r: a
 2dup =
 ; xt a+ T/F r: a
 if
 ; xt a+ r: a
 2drop r> exit
 ; a
 fi
 r>
 ; xt a+ a
 drop
 ; xt a+
 dup
 ; xt a+ a+
 0 =
 ; xt a+ true/false
 until ;

 ; show the (approx?) compiled size (in bytes) of a word
 ; Do an rcount first. But this doesnt work with multiple
 ; wordlists!!
 : wsize
 ; xt

 dup 1-
 ; xt xt-1
 rcount drop swap
 ; A xt
 xt-
 ; A xt’
 1- rcount drop
 ; A B
 swap - 1- ;
 ; B-A-1

 : head. (xt -- / decompile word header *)
 dup 1- rcount
 ; xt A n / A= start of name
 drop 1- 1-
 ; print address
 ; xt A-2
 cr dup u.
 ; xt A
 ; print link back address
 ." : [" @ dup u. ."] -> "
 ; xt A
 1- rcount type 1- cr
 ; xt-1
 rcount >r dup u.
 ; a-n r: n
 ." : " r> dup >r
 ; a-n n r: n
 ; print word name in quotes
 ; use .xt here?
 ;c. " type c> "
 qtype space
 r>
 ;*** print word length|control in quotes
 ;!! need to handle immediate words which have msb set
 u. cr ;

 ; decompile approximately as many bytes as the word is
 ; minus the header bytes
 ; (xt --) ’
 ; shows how a word is compiled in the dictionary ’
 ; The dictionary header and compiled code is displayed ’
 ; for the word corresponding to the execution address. ’
 ;: word. (xt --)
 ; dup head. dup wsize 4 - de, ;

 : xt? (A -- / is address A an xt? *)
 last @
 begin
 ; A L
 2dup = if 2drop 1 exit fi
 xt+ dup 0=
 until swap drop ;

 times 7*1024-($-block1) db 0

 ; called definitions in Ans forth
 ; Actually context @ is a pointer to the data-field of a
 ; wordlist, not to its execution token
 : defs
 ; (-- set "current":="context" *)
 context @ current ! ;

 ; this leaves the address of the next byte after the item
 ; print address as well?
 : de,,
 ;(A -- A’ / decompile one instruction *)
 c@+ dup .yellow .code .white
 ; A+1 op

/home/arjuna/sf/htdocs/books/osdev/os.asm Sun Mar 28 21:12:07 2021 60

 dup args
 ; A+1 op 0/1/2
 ; If opcode takes no arguments, then finished
 dup 0= if 2drop exit fi
 ; handle 1 byte argument opcodes
 ; A+1 op 1/2
 1 = if
 drop
 ; A+1
 c@+ c> : .lgreen c. .white exit
 ; A+2
 fi
 ; A+1 op
 dup [op’] fcall = if
 drop
 ; A+1, also check if A+1 is a named xt or does> etc
 @+ c> : dup xt? if .xt else u. ." does>?" fi exit
 ; A+3
 fi
 ; A+1 op
 ; need to print signed jump for ljump
 ;dup [op’] ljump = if
 ; @+ c> : .lgreen . .white exit
 ; A+3
 ;fi ;
 ; A+1 op
 args 2 = if
 @+ c> : .lgreen . .white exit
 ; A+3
 fi ;

 ; a very simple decompiler, just use it like this
 ; ’ name 10 un,
 ; This will decompile 10 instructions for the word <name>
 ; address would be useful too...
 : un, for de,, space next ;
 ; use a limit address instead of for/next

 ; decompiles n bytes starting at address n ’
 ; returns the next address after the decompiled ’
 ; bytes. Need to handle jumps too. This cannot decompile’
 ; machine code, only bytecodes ’
 : Un,
 0 nn ! for
 dup .brown u. .white c> : space de,, cr
 nn ++ 20 mod 0= if
 .lgreen c> > .white
 key c: q = if
 unloop exit
 fi cr
 fi
 ; do paging here
 next ;

 : word. (xt --)
 dup head. dup wsize 4 - Un, ;

 : bin
 ; (-- / set base to binary *)
 2 base ! ;
 : hex
 ; (-- / set base to hexadecimal 16 *)
 16 base ! ;
 : deci 10 base ! ;

 ; print the stack with signed numbers, source version
 ; display the items on the data stack without
 ; altering it. The top (or most recent) item
 ; is printed rightmost

 : .s (--)
 depth 0 = if exit fi
 depth
 ; ... n n
 begin swap >r depth 1 = until
 ; ... n r:
 begin
 r> dup
 ; n a a
 . space swap
 ; a n
 1- dup 0 =
 ; a n-1 n-1
 until drop ;

 ; the escape keycode
 : esc (-- n) 27 ;

 ; returns the lowest number of "a" and "b"
 : min (a b -- min)
 2dup < if drop else swap drop fi ;

 ; short jump if/fi, maybe a bit faster, for "wfind",
 : IF [op:] jumpz here 2 c, ; imm
 : FI dup here swap - 1+ swap c! ; imm

 ; short-jump until (slightly faster). begin is the same
 : Until
 ; (+/-128 byte jump "until" *)
 [op:] jumpz here 1- - c, ; imm

 ; loops until top-of-stack is zero
 : Until0
 ; (+/-128 byte jump "until0" *)
 [op:] jumpnz here 1- - c, ; imm

 times 8*1024-($-block1) db 0

 : xt>name (xt -- A n / return name from word xt *)
 1- rcount ;

 ; gforth word str=
 : s=
 ;(A u B v -- F / true if strings == *)
 rot over
 ; A B v u v
 ; if lengths not equal, false. 2drop and drop are opcodes
 <> IF 2drop drop 0 exit FI
 ; A B v
 ncompare ;

 ; called I’ in some forths (ron geere)
 ;
 : iimax (-- n / fetch loop limit *)
 r> r> r> dup >r swap >r swap >r ;
 ;r> r> dup >r swap >r ;

 : 2r@
 r> r> dup >r swap >r ;

 : all (n -- / load blocks from last block >> n *)
 ; lb is the last block loaded with "load"
 lb @ 1+ swap 1+
 ; a+1 n+1
 thru ;

 ; just display the current disk geometry parameters which
 ; will be used for reads and writes from and to disk (usb etc)
 : geom (--)

/home/arjuna/sf/htdocs/books/osdev/os.asm Sun Mar 28 21:12:07 2021 61

 ." boot drive: " drive c@ u. cr
 ." sectors per track: " sectors @ u. cr
 ." sides (platters): " sides @ u. cr ;

 ; on different systems (slower, faster) the mswait needs
 ; to be adjusted. Perhaps there is a way to auto adjust with
 ; clock etc
 ; on qemu asus seems about right
 var mswait 950 mswait !
 ; standard forth
 : ms (n -- / wait n milliseconds *)
 ; at least >=1
 ; dup 0 <= if drop exit fi
 0 do mswait @ 0 do nop loop loop ;
 ; get the next insertion point in the counted string A after A+i or
 ; just return A A+i if already at the last insertion point.
 ; The last insertion point is one character after the last char
 ; in the string
 : nextc (A A+i -- A A+i’ / next char, insert in string *)
 2dup swap - >r
 ; A A+i r: i
 ; check the count
 over c@ 1 + r>
 ; A A+i n+1 i
 swap <
 ; A A+i flag (i<n+2)
 if 1+ fi ;

 ; get the previous insertion point in the counted string A before A+i or
 ; just return A A+i if already at the first insertion point (0)
 ; Also, need to skip over cr/nl (13,10) characters for traversing
 ; multiline strings
 : prevc (A A+i -- A A+i’ / previous char, insert in string *)
 2dup swap - 1
 ; A A+i i 1
 swap < if 1- fi ;
 ; A A+i’

 ; returns the maximum number of "a" and "b".
 : max (a b -- max)
 2dup < if swap drop else drop fi ;

 ; return true if n=b or n=a otherwise return false
 : either (n a b -- t/f)
 2>r dup r> =
 ; f r: b
 if r> 2drop -1 exit fi
 r> = ;

 ; not a standard forth word, as far as I know.
 ; Makes copying/initialising strings a bit easier
 : smove (A n B -- / copy n chars from A. Store counted string at B *)
 >r dup
 ; A n n r: B
 r> c!+
 ; A n B+1
 swap cmove ;

 times 9*1024-($-block1) db 0

 ; what you would expect
 : 3dup (a b c -- a b c a b c *)
 ; a b c
 >r 2dup
 ; a b a b r: c
 r@ swap
 ; a b a c b r: c
 >r swap
 ; a b c a r: c b

 r> r> ;

 : @- (A -- A-2 c / like @+ *)
 dup @ swap 2 - swap ;

 : c@- (A -- A-1 c / like c@+ *)
 dup c@ swap 1- swap ;

 : c!- (c A -- A-1 / like c!+ *)
 dup >r c! r> 1- ;

 ; this version just prints until the next newline or max n chars
 ; Another version could use "startline" above to print whole line
 : typeline (A n -- /print line containing addr A *)
 0 do
 c@+
 ; A’+1 c
 dup 13 10 either if
 ; A’+1 c
 2drop unloop exit
 fi
 emit
 ; A’+1
 loop drop ;

 : append (A n B -- / append n chars from A to counted string at B *)
 ; append characters at the end of B
 count
 ; A n B+1 m
 4dup
 ; A n B+1 m A n B+1 m
 +
 ; A n B+1 m A n B+1+m
 swap cmove
 ; Now increment the count at B
 ; A n B+1 m
 swap 1- >r
 ; A n m r: B
 + r>
 ; A n+m B
 c! drop ;

 ; search source code blocks for a word
 : ss/ (-- / search blocks for a phrase *)
 ; get the whole line, not just a word
 ; actually, when interactive there is no newline 10
 ; char, but parse will advance to the end of the input
 ; anyway. There is a bug in "parse" at the moment which
 ; cuts a character. see bugs
 ; nn is counter for paging
 0 nn !
 10 parse
 ." Searching for "
 ; white, yellow, white
 14 fg 2dup type 7 fg
 ." on disk... " cr cr
 ; forground bright white
 15 fg
 ." Block Text " cr
 ." ----- ---- " cr
 ; A n
 ; "final" has the last source code block
 final @ 0 do
 ; A n
 2dup
 ; A n A n
 ii block 1024
 ; A n A n B 1024
 2swap search

/home/arjuna/sf/htdocs/books/osdev/os.asm Sun Mar 28 21:12:07 2021 62

 ; A n B’ n flag
 if
 nn ++ 20 mod 0= if
 .lgreen ." ..." .white
 key [char] q = if
 unloop exit
 fi cr
 fi
 ; A n B’ n
 ; just assume lines are < 80 chars
 drop 80
 ; A n B’ 60
 ; green text
 .green ii . [char] > emit
 ; purple text
 13 fg
 space
 typeline cr
 else
 ; A n B’ n
 2drop
 fi
 loop
 ; A n
 2drop .white ; imm

 ; return n if a<n<b or a if n<a or b if n>b
 : limit (n a b -- n/a/b) >r min r> max ;

 times 10*1024-($-block1) db 0

 24 buffer: defterm

 ; modify this to display the source code for <word>
 ; Puts -1 on the stack if not found
 ; A similar word is called "locate" in many forths.
 : defblock (A n -- n / find 1st definition block of word at A/n *)
 ; add a colon before the search word
 s" : " defterm smove
 ; append the search word after the colon in "defterm"
 ; A n
 defterm append
 defterm count
 ; A n
 30 0 do
 ; A n
 2dup
 ; A n A n
 ii block 1024
 ; A n A n B 1024
 2swap search
 ; A n B’ n flag
 if
 ; A n B’ n
 4drop ii
 ; ii
 unloop exit
 else
 2drop
 ; A n
 fi
 loop
 2drop -1 ;

 : lo (<word> -- / loads all blocks until <word> *)
 wparse
 ; A n
 defblock

 ; x (block containing first definition of <word> or -1, not found)
 ; check if -1
 dup -1 = if drop ." not found" cr exit fi
 ; now load all blocks upto and including required block
 all ; imm

 ; display byte value of K value
 : K 1024 u* ;

 ; a word that types one line. What should we do with
 ; unprintable characters? Print a ’?’ Also, what happens
 ; to the remnant 13,10 ?
 : typeline (A n -- A’ n’ /type one line of input)
 0 do
 c@+ dup emit 13 = if ii iimax swap - unloop exit fi
 loop 0 ;

 ; we can just count 13,10 chars and pause when they reach
 ; a certain number. Also, its better to ignore asci 13
 : page (A n -- / page string at A length n *)
 ; initialise newline counter
 0 nn !
 ; if string length = 0 do nothing
 dup if0 2drop exit fi
 0 do
 ; A
 c@+
 ; A’+1 n
 ; ignore \r = asci 13. Below we use the trick of putting
 ; a dummy 0 on the stack to get an if/elseif/elseif/fi effect
 dup 13 = if drop 0 fi
 dup 10 = if
 drop 0 cr
 nn ++ 20 mod 0= if
 10 fg ." ..." 7 fg
 key [char] q = if
 unloop exit
 fi cr
 fi
 fi
 dup if emit else drop fi
 loop drop ;

 ; find out how many bytes are free in source block n
 : bfree (n -- free)
 block dup
 ; adr adr
 begin c@+ 0 = until
 ; adr adr+x
 swap - 1024 swap - ;
 ; 1024-x

 ; displays block n on the screen.
 : list
 ;(n -- /display block n *)
 .lgreen ." Listing Block " dup . .white
 ." (" dup bfree .yellow . .white ." /1024 free)" cr
 block 1024 page ;

 times 11*1024-($-block1) db 0

 ;." block 49 after vocab" cr
 : only (-- / reduce s/o to minimum wordlists {Vlist,Forth} *)
 2 s/o ! ;

 ; a reverse counter to use with for/next
 : ’ii iimax ii - ;

 ; breaks out of one level of if/begin etc and jumps back to

/home/arjuna/sf/htdocs/books/osdev/os.asm Sun Mar 28 21:12:07 2021 63

 ; last begin. Preserves jump-back address for ’again’ to use later.
 ; (comp: jb JB -- jb JB) (run: --)
 ; this is not elegant because it fails if there are 2 levels of nesting.
 : continue
 [op:] jump
 2dup drop
 ; jb JB jb
 here 1-
 ; jb JB jb here-1
 - c, ; imm

 ; a simple optable scan with no numbers
 ; : ops optable 2 +
 ; begin @+ dup 0= if exit fi .xt space again

 ; list all opcodes (=< NOP which is the last in the table but
 ; wont be for ever, so scan the optable instead.)
 : ops [op’] nop 1+ 1
 do
 ii 8 mod 0 = if cr fi
 ii dup 6 fg u. [char] : emit 3 fg .code space
 loop ;

 ; A Minimalistic "see"
 ; : see wparse tick drop word. ; imm

 ; a standard (?) word to see a word decompilation
 : see (<name>)
 wparse 2dup
 ; A n A n
 tick
 ; A n X [0/1/2/3]
 dup 0 = if 2drop type ." ??" cr exit fi
 dup 1 = if 2drop type ." (number)" cr exit fi
 dup 2 = if
 2swap type drop ." opcode=" u. cr exit fi
 ; A n xt 3
 2swap 2drop
 ; xt 3
 drop word. ; imm

 ; db ’ flag=0 not number nor word ’
 ; db ’ flag=1 if number, 2 if opcode, 3 if procedure ’

 ; duplicate TOS if non-zero
 ; eforth ?dup
 : ?dup (n -- n n | 0 / duplicate t-o-s if <> 0) dup if dup fi ;

 ; a recursive greatest common divisor word
 ; from r.v.noble
 : gcd (a b -- gcd / greatest common divisor *)
 ?dup if tuck mod gcd fi ;

 : startline (A B -- B’ /leave address of start of line/string *)
 begin
 ; error! B cannot be < A
 2dup swap < if swap drop exit fi
 ; exit if B=A (already at start of string)
 2dup = if swap drop exit fi
 ; A B’
 c@-
 ; A B’-1 c
 13 10 either if
 ; A B’-1
 2 + swap drop
 ; B’+1
 exit
 fi
 again ;

 ; a simple approx * 10K
 : pi 31415 ;

 ; this could/should be a constant
 : 10K 10000 ;

 ; exponential e * 10K
 : E 27182 ;
 ; e == 1 + 1 + 1/1*2 + 1/1*2*3 + ...

 ; golden ratio phi (1 + 5^1/2)/2 * 10K
 : phi 16180 ;

 ; This square root method is very cool and gets a good
 ; approximation within about 6 or so iterations.
 ; gets the next approximation to the square root, from ron geere.
 ; based on newtons method
 : approx (n x -- n x’)
 over over / + 2 / ;

 ; return b, the approximate square root of a (maximum 32767 if the /
 ; division operator is signed, or else 64K if not),
 ; this just does the iterations of the "approx" word.
 : sqrt (a -- b)
 60 5 0 do approx loop swap drop ;

 times 12*1024-($-block1) db 0

 ; not so simple because have to juggle
 ; : 3>r (push 3 onto ret-stack)
 ; r> -rot 2>r swap 2>r ;
 ; : 3r> (pop 3 fromfk ret-stack) 2r> r> ;

 : s+c (c A -- append char c to counted string A *)
 dup c@
 ; c A n
 1+ over c!
 ; c A
 dup c@ + c! ;

 ; deletes the last word in the dictionary by regressing ’last’
 ; and moving back the dp compile pointer to the end of the
 ; previous word
 : del (--)
 last @ 1- rcount drop 2 - dp !
 last @ xt+ last ! ;

 50 buffer: wordname

 ; wordname 2 swap c!+ 58 swap c!+ bl swap c!+

 ; todo! add ": " infront of search term. Print until next ";"
 : showdef (<word> /shows source definition for word *)
 wparse
 ; A m

 14 fg 2dup type 15 fg
 ; [char] "
 ." source code.. " cr
 ; A n
 30 0 do
 ; A n
 2dup
 ; A n A n
 ii block 1024
 ; A n A n B 1024
 2swap search
 ; A n B’ n flag

/home/arjuna/sf/htdocs/books/osdev/os.asm Sun Mar 28 21:12:07 2021 64

 if
 ; A n B’ n
 ; just assume lines are < 80 chars
 drop 200
 ; A n B’ 60
 ; green text
 10 fg
 ii . [char] > emit
 ; purple text
 13 fg
 space
 type cr
 else
 ; A n B’ n
 2drop
 fi
 loop
 ; dull white text
 7 fg ; imm

 ; increments value stored at address a
 ; or call this ++
 : !1+ (a --) dup @ 1+ swap ! ;

 ; create a list data type (an array of 16bit cells with length
 ; and capacity). At run time, put reference on stack to the first
 ; byte of the data structure
 : list: (comp: n --) (run: -- addr)
 create dup , 0 , cells allot0 does> ; imm

 ; addr is a reference to a list: object
 ; check if the list is full (i.e. size==capacity)
 : li/full (addr -- flag=t/f)
 @+ swap @ = ;

 ; check if the list is empty
 : li/empty
 ; (addr -- flag=t/f)
 2 + @ 0 = ;

 ; increment list size by 1. But all these words may degrade
 ; performance.
 : li/incr (addr --) 2 + dup !1+ ;

 ; delete last element by decreasing list size
 : li/del (addr --)
 2 + dup ./ a+2 a+2
 @ 1- swap ! ; ./ a

 ; initialize the list
 ; delete all elements, set size (not capacity) to 0
 : li/0 (addr --)
 2 + 0 swap ! ;

 ; return the list size
 : li/size (addr -- n) 2 + @ ;

 ; add a new element to the list and increment size
 ; use: 5 obj li/add
 : li/add (n addr --)
 dup li/full if 2drop exit fi
 tuck 2 + @+
 ; a n a+4 len
 2* + !
 ; store new element.
 2 + !1+ ;
 ; increment size

 times 13*1024-($-block1) db 0

 ; a b c d e -- a b c d e a b c d e
 : 5dup >r 4dup r> dup >r
 ; a b c d a b c d e R: e
 -rot 2>r -rot 2r> r> ;

 : memdup>
 ; (A -- / copy cell [2bytes] at A to A+2 *)
 @+ swap ! ;

 : also
 ;(-- / duplicate top item on search-order stack *)
 s/o @ 0= if
 ; if nothing in s/o then do nothing
 drop exit
 else
 s/o dup @ 2* +
 ; A+l*2
 memdup>
 s/o ++ drop
 fi ;

 : c++
 ; (A -- A / incr byte value stored at A *)
 dup dup c@
 ; A A n
 1+ swap c! ;

 : c--
 ; (A -- A / decr byte value stored at A *)
 dup dup c@ 1- swap c! ;

 : spaces (n -- / type n spaces *)
 begin space 1- dup 0 = until drop ;

 ; an asci block char.
 : ablock 219 ;

 ; print n coloured blocks
 : glow
 ; (n -- / print n coloured blocks *)
 begin
 dup fg 219 emit 1- dup 1 =
 until drop ;

 ; an asci table
 : asci (-- / show a table of asci chars *)
 1 begin
 dup u. space dup emit space 1+ dup
 255 =
 until drop ;

 ; list elements
 : li/ls (addr --)
 dup li/empty if ." <list empty> " drop exit fi
 dup li/size ./ a size
 swap 4 + swap 0 ./ a+4 size 0
 do @+ u. space loop drop ;

 ; list elements as opcodes
 : li/ops (addr --)
 dup li/empty if ." <list empty> " drop exit fi
 dup li/size
 ; a size
 swap 4 + swap 0
 ; a+4 size 0
 do @+ .code space loop drop ;

/home/arjuna/sf/htdocs/books/osdev/os.asm Sun Mar 28 21:12:07 2021 65

 ; list elements as calls
 : li/calls (addr --)
 dup li/empty if ." <list empty> " drop exit fi
 dup li/size
 ; a size
 swap 4 + swap 0
 ; a+4 size 0
 do @+ .xt space loop drop ;

 ; Just testing wordlist creation and management.
 ; The "Forth" vocab is defined in bytecode
 ; the moment.
 ;Vlist defs
 ; vocab Edit vocab Asm
 ;Forth defs

 ; These lines are crashing (3 oks)
 ; also Edit
 ; also Asm

 times 14*1024-($-block1) db 0

 ; see if list has element n
 : li/has (n A -- F)
 dup li/empty if 2drop 0 exit fi
 swap >r
 ; a r: n
 dup r> swap
 ; a n a
 dup li/size
 ; a n a size
 swap 4 + swap 0
 ; a n a+4 size 0
 do
 ; a n a+4
 @+ swap >r
 ; a n m r: a+x
 >r dup r>
 ; a n n m r: a+x
 = if r> 2drop drop 1 unloop exit fi
 r>
 ; a n a+x
 loop
 2drop drop 0 ;

 ; add an element only if list doesnt already contain element
 : li/addu (n addr --)
 2dup li/has
 ; n A t/f
 if 2drop exit fi li/add ;

 ; Using a background color cursor
 ; Modified ctype to display multiline strings. But
 ; the \r \n characters make the screen scroll, when xy is near
 ; the bottom of the screen
 ; Make ctype responsible for showing itself. So add x y params
 ; on stack and eliminate showbuffer. This will allow us to
 ; have a margin on multiline text. This is used by accept and
 ; by edit (or will be)
 : ctype (A A+i -- / show string at A with cursor at i *)
 swap count
 ; A+i A n
 dup 0 = if
 drop 2drop
 ; print a block cursor at the end of the string too.
 ; 4 fg 254 emit 7 fg
 ; green background colour cursor
 2 bg space 0 bg

 exit
 fi
 ; A+i A n
 ; set normal colour to white

 0 do
 ; A+i A’
 ; print green background block cursor
 .white
 2dup = if 2 bg .brown fi
 c@+
 ; A+i A’+1 c
 ; ignore \r = asci 13. Below we use the trick of putting
 ; a dummy 0 on the stack to get an if/elseif/elseif/fi effect
 dup 13 = if drop 0 fi
 dup 10 = if
 drop 0 cr
 ; clear the next line
 getxy 60 spaces atxy
 fi
 dup if emit else drop fi
 ; back to normal background colour
 0 bg
 loop
 ; A+i A’
 = if 2 bg space 0 bg fi ;

 ; inserts character c in counted string A at the insertion
 ; point A+i. This could handle 13,10 newlines as well
 : insert (A A+i c -- A A+i+1 /insert char in string *)
 ; change \r (13) to \n (10) since this system uses unix line endings
 dup 13 = if drop 10 fi
 ; first increment the count
 >r >r c++ r>
 ; A A+i r: c
 2dup - >r
 ; A A+i r: c i
 over c@ r>
 ; A A+i n i r: c
 ; If the insertion point is after the last character in the
 ; string, then all we have to do is copy the character in.
 < if
 ; A A+i r: c
 r> swap c!+
 ; A A+i+1
 ; count at A already incremented, nothing else to do
 exit
 fi
 ; now the real work: copy string after A+i 1 char right
 ; A A+i r: c
 2dup - >r
 ; calculate how many chars need to be moved right
 ; A A+i r: c i
 over c@ 1+ r> -
 ; A A+i n+1-i r: c
 >r dup dup 1+ r>
 ; A A+i A+i A+i+1 n+1-i r: c
 cmove
 ; now store the char in its place in the string
 ; A A+i r: c
 dup r> swap c!
 ; A A+i
 1+ ;

 ; delete one character from the counted string at A or do
 ; nothing if i=1
 : delchar (A A+i -- A A+i’ /delete 1 char in string, or not *)
 ; do nothing if i==1 (at first character)
 2dup swap - 1 = if exit fi

/home/arjuna/sf/htdocs/books/osdev/os.asm Sun Mar 28 21:12:07 2021 66

 ; first decrement the count
 ; A A+i
 swap c-- swap
 ; A A+i
 2dup - >r
 ; Calculate how many chars need to be left shifted
 ; A A+i r: i
 over c@ 1+ r> -
 ; A A+i n+1-i
 >r dup dup 1- r>
 ; A A+i A+i A+i-1 n+1-i
 cmove
 ; A A+i
 1- ;

 times 15*1024-($-block1) db 0

 ; called previous in ans forth
 : prev (-- / drop one wordlist from search order *)
 ; Vlist and Forth are the minimum lists in this "forth"
 s/o @ 2 > if s/o -- drop fi ;

 ; leave the value (not pointer) on the stack
 : ++n (A n -- [A]+n)
 swap dup @
 ; n A m
 swap >r + dup r>
 ; n+m n+m A
 ! ;

 ; check if opcode. Need to scan the opcode table here, not
 ; just compare to "nop"
 : op? (n -- F / is n an opcode or not? *)
 0 [op’] nop 1+ within ;

 ; get a unique list of dependencies for a word
 ; will have to follow unconditional jumps to their target.

 50 list: dep.oo
 50 list: dep.cc
 : deps (xt -- / show dependencies for a compiled word)
 ; there is a bug because wsize doesnt work for the
 ; last word, need to check the last variable

 ; Another bug is that wsize includes the name of the
 ; word. So we need "wbytes" which is just the compiled
 ; byte size.
 dup dup wsize + swap ./ xt+size xt
 begin
 c@+ dup ./ end A+1 n n
 op? ./ e A+n op flag
 ;if drop drop drop exit fi ./ bail if not an opcode
 if
 dup
 dep.oo li/addu space ./ end A+n op
 ;dup .code
 fi
 ; check here if it is an unconditional jump, and jump there
 ; if an fcall get the xt and recurse
 dup [op’] fcall =
 if
 drop dup 2 + swap ./ end A+n+2 A+n
 @ ./ E A+x xt :get fcall xt
 ;dup
 dep.cc li/addu
 ;dup
 ;." <" .xt ." > "
 ;deps ./ recursive!
 else

 args + ./ end A+x
 fi
 2dup <
 until 2drop ;

 ; finds dependencies, initializes the arrays and calls deps
 : Deps (--)
 wparse tick drop
 dep.oo li/0 dep.cc li/0 deps
 cr 11 fg ." opcodes: " 15 fg dep.oo li/ops
 cr 11 fg ." words: " 15 fg dep.cc li/calls ; imm

 ; another version of 2= using ’and’ logic, 7 ops versus 13 for 2=
 ; This shows how to use and logic to replace if statements.
 : d= (a b A B -- -1:true, 0:false)
 swap >r =
 ; a flag(-1:true,0:false) r: A
 swap r>
 ; t/f a A
 =
 ; t/f t/f
 and ;

 : video (u --) dup vid ." video mode " . ;

 times 16*1024-($-block1) db 0

 : tmode (text mode) 3 video ;
 : vmode (video mode) 16 video ;

 : nip (a b -- b) swap drop ;

 ; the simplest random number, but only works approx 1/second
 : rnd (-- n / random number mod 16 *)
 clock drop 16 mod ;

 ; a forth inc very simple random generator
 (simple random number generation -- high level)
 var seed
 ; or use here... here rnd !
 clock drop seed !
 : rand seed @ 31421 * 6927 + dup seed ! ;
 : random (u -- u’ / random # between 0 and u *)
 rand um* nip ;

 ; returns true if ekey is a left arrow
 : arrow< (n 0/1 -- flag) 75 1 d= ;
 ; returns true if ekey is a right arrow
 : arrow> (n 0/1 -- flag) 77 1 d= ;
 : bs 8 emit ;

 ; this displays a buffer A at a particular point x y on the
 ; screen with the cursor positioned at [x+i, y].
 ; [A] contains the length of the string and "i" is the insertion
 ; point as an offset from A. "i" must be > 0.
 ; This will be called after every keystroke in acceptx to display
 ; the state of the buffer.
 : showbuffer (x y A A+i -- /shows buffer A at x,y *)
 ; x y A A+i
 2swap 2dup atxy
 ; A A+i x y
 80 spaces atxy
 ; A A+i
 ctype ;

 ; A new version of accept that can edit with the arrow keys.
 ; No character limit
 ; Count, buffer and insertion point A+i are updated with every
 ; keystroke, so we dont need A+n on the stack, nor A+1

/home/arjuna/sf/htdocs/books/osdev/os.asm Sun Mar 28 21:12:07 2021 67

 : accept.arrow (A -- / get typed edited text into buffer A *)
 ; initialise buffer to nothing
 0 over !
 ; hide the text cursor, its annoying
 6 7 cursor
 ; "getxy" to saves the initial screen position
 ; A
 dup getxy 2swap 1+
 ; x y A A+i (where A points to count byte)
 begin
 ; x y A A+1
 ; for debugging
 ; getxy >r >r 0 22 atxy ." count:" swap dup c@ . swap r> r> atxy
 ; getxy >r >r 0 23 atxy ." stack:" .s r> r> atxy
 ; x y A A+1
 4dup showbuffer
 ; x y A A+1
 ekey
 ; x y A A+i k flag
 ; extended keys (eg: arrows, page-up/down etc) have flag=1
 if
 ; x y A A+i k
 ; up arrow
 ; for single line editing, use up arrow to set
 ; insert point to beginning of line
 dup 72 = if
 ; x y A A+i k
 2drop dup 1+ 0
 ; x y A A+1 0
 fi
 ; x y A A+i k
 ; down arrow
 ; for single line editing, use down arrow to set
 ; insert point to end of line
 dup 80 = if
 ; x y A A+i k
 2drop dup count + 0
 ; x y A A+1+n 0
 fi
 ; left arrow
 dup 75 = if
 ; x y A A+i k
 ; cls
 drop prevc 0
 ; x y A A+i’ 0
 fi
 ; right arrow
 dup 77 = if
 ; x y A A+i k
 drop nextc 0
 fi
 ; cr ." stack: " .s cr
 drop
 ; x y A A+i+1
 else
 ; x y A A+i k
 ; now handle normal keys and characters
 dup 13 = if
 ; reshow the cursor
 7 6 cursor
 drop 4drop exit
 fi

 ; x y A A+i k
 ; backspace key
 dup 8 = if
 ; x y A A+i k
 ; delchar handles all cases
 drop delchar

 ; x y A A+i
 else
 ; No emit! because "showbuffer" does that.
 ; x y A A+i k
 insert
 ; x y A A+i+1
 fi
 fi
 ; if extended or normal char
 ; x y A A+i
 again ;

 ; make backtick ‘ put a newline 13,10 in the buffer
 ; for testing
 ;dup 96 = if
 ; drop
 ; 13 insert 10 insert 0
 ;fi

 times 17*1024-($-block1) db 0

 ; gforth is...
 ; : find (cA â\200\223 xt +-1 | cA 0)

 ; "last" is "latest" in many forths
 ; This is slightly different from Ans forth find (A -- xt)
 ; hence the slightly different name.

 ; This is probably the most important word for speed of
 ; compilation
 ; IF/FI is a short jump if/fi and should be a whisker faster
 : wfind
 ;(A n xt -- xt’|0 / find name at A starting search at xt *)
 begin
 1- rcount
 ; A n B m
 swap 2>r dup r>
 ; A n n m r: B
 ; if string lengths are equal
 = if
 ; A n r: B
 r> swap >r 2dup
 ; A A B B r: n
 r@ swap >r
 ; A A B n r: n B
 ncompare IF
 ; A r: n B
 ; now do name>xt
 drop 2r> + 1+
 exit
 FI
 2r> swap
 ; A n B
 else r> fi
 ; A n B
 1- 1-
 ; A n B-2
 @ dup
 Until0 2drop drop 0 ;

 ; find a name in the search order
 : find.so (A n -- xt/0)
 s/o @ for
 ; ." in find.so for loop " cr
 2dup
 ; A n A n
 ii 2* s/o + @
 ; for debugging
 ; ." in find.s/o: " .s cr

/home/arjuna/sf/htdocs/books/osdev/os.asm Sun Mar 28 21:12:07 2021 68

 ; dup .vname space
 ; A n A n W
 @ wfind
 dup if
 (leave xt) >r 2drop r> unloop exit
 else drop fi
 next
 ; not found, so push 0
 2drop 0 ;
 ’ find.so is nfind

 ; Vocabs are unusual because they are manipulated through
 ; the s/o search order buffer. There is no direct way to
 ; access their data field (which contains a pointer to the
 ; last word defined in the wordlist).
 ;
 ; vocabulary in ans forth. Invoking the name of a wordlist
 ; set "current"=<name> (replacing top item in search-order
 ; but we also need to get access to the pointer field of
 ; the vocab (maybe with "nfind" etc ?).
 ; The data field in the vocab is a pointer to the last word
 ; in this wordlist. "vocabulary" does not seem to exist in modern
 ; forth standards. >s/o replaces (or appends if |s/o| < 3)
 ; the new vocab in the search order buffer
 : vocab
 ; (<name> -- / create new wordlist <name> *)
 Vlist defs
 create 0 , does> >s/o ; imm
 ; Trying to insert Vlist here causes some strange behaviour
 ; ls is not coloured properly etc.
 ; Vlist

 ; the 2-2+ trick is to avoid the loop parameters for
 ; for/next which are not interesting, or else use begin/end
 ; with a counter.
 : .rcall
 ; (show return stack as calls)
 rdepth 2 - for
 ; print 4 to a line
 ii 4 mod 0= if cr fi
 ii 2 + rpick
 dup u. space
 ; ip points just after last fcall address FCALL:Addr: <--ip
 ; or points just after PCALL: if pcall sub 3, if FCALL sub 2
 ; but this is dodgy because the byte at r(n)-1 could happen
 ; to be ==pcall==50 but still be part of an address.

 ;dup 1 - c@ [op’] pcall = if
 ; 2 - 3 Un, else
 ; 1 - 3 Un,
 ;fi
 ; check if "pcall" op
 2 - @ .xt
 space
 next ;

 ; recursive factorial. very succint in forth
 ; 16bit forth can only hold 8! no more
 : fact
 ;(n -- n! / leave n factorial *)
 dup 1 = if exit fi dup 1- fact u* ;

 ; recursive arithmetic series
 : arith (n -- 1+2..+n / sum arithmetic series *)
 dup 1 = if exit fi dup 1- arith + ;

 ; calculate E exponent using infinite series and factorial
 ; we can only loop upto 8 because this is a 16 bit forth.

 ; accurate to 2 decimal places. All is scaled by 10K
 : Ecc 10K 8 1 do 10K ii fact / + loop ;

 ; But this below is not the simplest. We can write an
 ; accept with no backspace editing.
 ; eg: : accept.0 ...

 ; A simple source version of "accept", with no character limit,
 ; no special keys, only editing with backspace
 : accept.basic (a -- / get text into buffer *)
 dup 1+ dup
 ; A A+1 A+1
 begin
 key dup
 ; A A+1 A+n k k
 13 = if drop swap - swap c! exit fi
 dup
 ; test if it is a backspace
 8 = if
 ; start of buffer?
 drop 2dup <
 if bs space bs 1- fi
 continue
 fi
 dup emit
 ; A A+1 A+n k
 swap c!+
 ; A A+1 A+n+1
 again ;

 ; if we dont have anything better, just use this
 ’ accept.basic is accept

 times 18*1024-($-block1) db 0

 ; colour names
 1 con blue 2 con green 3 con pblue
 4 con red 5 con purple 6 con brown
 7 con white 8 con grey 9 con lblue
 10 con lgreen 11 con llblue 12 con lred
 13 con pink 14 con yellow 15 con lwhite

 ; buffers for holding previous commands and a temp
 ; string. This will allow the up and down arrows to recall
 ; a previous command. Also, we could only create these
 ; variables if they dont exist already.
 80 buffer: h1
 80 buffer: h2
 80 buffer: temp

 ; These different versions of accept can be vectored to
 ; "accept" with "defer accept ’ accept.hist is accept"
 ; This is nice because it allows the user to change the behaviour
 ; of the system.
 ;
 ; A version of accept that has command history and allows
 ; editing with arrow keys. The up arrow recalls previous text
 : accept.hist
 ;(A -- / get typed text into buffer A with history *)
 ; initialise buffer to nothing
 ; actually the shell should probably set this to 0, not here.
 0 over !
 ; A
 ; set history to null ??
 ; 0 h1 ! 0 h2 ! 0 temp !
 ; hide text cursor
 6 7 cursor
 ; "getxy" saves the initial screen position
 ; A

/home/arjuna/sf/htdocs/books/osdev/os.asm Sun Mar 28 21:12:07 2021 69

 dup getxy 2swap 1+
 ; x y A A+i (where A points to count byte)
 begin
 ; x y A A+1
 ; for debugging
 ; getxy >r >r 0 22 atxy ." count:" swap dup c@ . swap r> r> atxy
 ; getxy >r >r 0 23 atxy ." stack:" .s r> r> atxy
 ; x y A A+1
 4dup showbuffer
 ; x y A A+1
 ekey
 ; x y A A+i k flag
 ; extended keys (eg: arrows, page-up/down etc) have flag=1
 if
 ; x y A A+i k
 ; up arrow
 ; for single line editing, use up arrow to recall previous
 ; command
 dup 72 = if
 ; copy buff->temp, h1->buff, h2->h1, temp->h2
 ; x y A A+i k
 2drop
 ; x y A
 dup count temp
 ; x y A A+1 n B
 ; copy buff->temp
 smove
 ; x y A
 ; copy h1->buff
 dup >r h1
 ; x y A H1 r: A
 count r>
 ; x y A H1+1 n A
 smove
 ; x y A
 ; copy h2->h1
 h2 count h1 smove
 ; copy temp->h2
 temp count h2 smove
 ; x y A
 ; move to first character of buffer
 dup 1+ 0
 ; x y A A+1 0
 fi
 ; x y A A+i k
 ; down arrow
 ; use down arrow to recall new command
 dup 80 = if
 ; x y A A+i k
 2drop
 ; x y A
 ; copy h2->temp, h1->h2, buff->h1, temp->buff
 ; downarrow
 ; copy h2->buff
 h2 count temp smove
 ; x y A
 h1 count h2 smove
 ; x y A
 dup count h1 smove
 ; x y A
 dup >r temp count r> smove
 ; x y A
 dup count + 0
 ; x y A A+1+n 0
 fi
 ; left arrow
 dup 75 = if
 ; x y A A+i k
 ; cls

 drop prevc 0
 ; x y A A+i’ 0
 fi
 ; right arrow
 dup 77 = if
 ; x y A A+i k
 drop nextc 0
 fi
 ; cr ." stack: " .s cr
 drop
 ; x y A A+i+1
 else
 ; x y A A+i k
 ; now handle normal keys and characters
 dup 13 = if
 ; x y A A+i k
 2drop
 ; here copy h1-h2 buff->h1
 ; x y A
 h1 count h2 smove
 ; x y A
 dup count h1 smove
 ; x y A
 dup
 ; because A=A showbuffer and ctype should not
 ; display any green cursor.
 ; x y A A
 showbuffer
 ; reshow the cursor
 7 6 cursor cr
 exit
 fi

 ; x y A A+i k
 ; backspace key
 dup 8 = if
 ; x y A A+i k
 ; delchar handles all cases
 drop delchar
 ; x y A A+i
 else
 ; No emit! because "showbuffer" does that.
 ; x y A A+i k
 insert
 ; x y A A+i+1
 fi
 fi
 ; if extended or normal char
 ; x y A A+i
 again ;

 ; this version of accept is probably the most useful, so
 ; we will use it (because it has command history and editing
 ’ accept.hist is accept

 ; slightly easier to use than insert
 : c+s
 ;(A c -- / insert char c to at start of A *)
 >r dup 1+ r> insert 2drop ;

 times 19*1024-($-block1) db 0

 ; try to create indexes
 ; ./ $-udot.so

 ; testing vocabs
 ;vocab New also New vocab Test also Test

 udot.so:

/home/arjuna/sf/htdocs/books/osdev/os.asm Sun Mar 28 21:12:07 2021 70

 : u.
 ;(n -- / print t-o-s as unsigned number in current base *)
 ; set pad=""
 0 pad c!
 ; n
 begin
 ; n’
 base @ u/mod
 ; r n’’
 swap digits +
 ; n’’ D+r
 c@ pad swap c+s
 dup 0=
 until drop pad count type ;

 : xytype (A n x y -- / print string at [x,y] then reset cursor *)
 getxy 2swap atxy
 ; A n x y
 2swap type atxy ;

 : asc (-- / show asci codes *)
 255 0 do
 ii 8 mod 0= if
 ii 16 mod 0= if
 cr 15 fg ii u. space
 else
 space 15 fg ii u. space
 fi
 fi
 ii 14 mod 1+ fg ii emit
 loop ;

 : tri (n -- / a triangle of color blocks *)
 2 do ii glow cr loop ;

 ; list colours
 : color (-- / show foreground and background colours *)
 16 0 do
 space ii dup fg u.
 loop cr
 16 0 do
 space ii dup bg u.
 loop 0 bg ;

 ; return true if a=A and b=B, or call d= (double equals)
 : 2= (a b A B -- t/f)
 swap >r =
 ; a flag(-1:true,0:false) r: A
 not if r> 2drop 0 exit fi r> = ;

 ; another version of 2= using logic, 7 ops versus 13 above
 : d= (a b A B -- -1:true, 0:false)
 swap >r =
 ; a flag(-1:true,0:false) r: A
 swap r>
 ; t/f a A
 =
 ; t/f t/f
 and ;

 times 20*1024-($-block1) db 0

 : rclear (clear the return stack)
 r> begin
 r> drop
 rdepth 0=
 until >r ;
 ; called 0sp in pforth

 : clear
 ;(-- / clear all items from data stack *)
 depth dup 0= if drop exit fi for drop next ;
 ; do something when an error occurs
 : abort clear rclear shell ;
 : abort" (-- / clear the stacks etc *)
 post ." [call:] abort ; imm

 ; this should be loaded with into deferred word "missing"
 ; and should abort, so that we can see what went wrong
 : miss.0 (n/xt/op 0 -- /handle word-not-found in dict *)
 cr 2drop >word
 ; A n
 type .red ." missing " [char] @ emit
 ; [L] last gets from "current"
 last @ .xt cr
 ;order cr
 ;*** compile exit even when an error occurs
 [op:] exit
 abort ;

 ’ miss.0 is missing

 ; compute the nth fibonacci using recursion
 : fib (n -- fib[n])
 dup 1 swap < if 1- dup 1- fib swap fib + fi ;

 ; count colons : and semi colons, to show source code slightly
 ; better. We use : and ; to indent definitions.
 var ncolon var nsemi
 ; a space margin
 var margin

 ; list word names and execution token addresses
 ; adjust this for multiple wordlists.
 : listxt (--) last @
 0 nn ! 0 ll !
 begin
 ; A’
 nn ++ 5 mod 0 = if
 cr
 ll ++ 20 mod 0= if
 ." ..." key [char] q = if drop exit fi
 fi
 fi
 dup .green u. [char] : emit dup .brown .xt space xt+ dup 0 =
 until drop ;

 ; Display asci codes of keys pressed. See ekeycode for the ekey
 ; version
 : keycode
 begin
 key dup u. space dup emit
 cr [char] q =
 until ;

 : ekeycode (-- / display keycodes for key-presses [ekey] *)
 begin
 ekey 2dup swap u. space u.
 drop cr [char] q =
 until ;

 times 21*1024-($-block1) db 0

 ; direction is 1=east, 2=south, 3=west, 4= north
 ;(drawing with pixel lines, using length, compass direction)

 ; draw a line starting a pixel position xy of length n
 ; (x y n --)

/home/arjuna/sf/htdocs/books/osdev/os.asm Sun Mar 28 21:12:07 2021 71

 ; : line 1 do 2dup pix 1+ swap 1+ swap loop ;

 : line (x y dx dy n -- x+dx*n y+dy*n dx dy / draw n pixels from [x,y] in dir d
x/dy *)
 0 do
 >r >r 2dup plot
 ; x y r: stepy stepx
 swap r> dup >r +
 ; y x+step r: stepy stepx
 swap r> r>
 ; x+step y stepx stepy
 swap >r
 ; x+step y stepy r: stepx
 dup >r +
 ; x+step y+step r: stepx stepx
 r> r>
 swap
 ; x+step y+step dx dy
 loop ;

 ; algorithm to convert BCD encoded values to binary (normal)
 ; binary = ((bcd / 16) * 10) + (bcd & 0xf)

 ; this should be a matrix multiplication
 : rot45 (dx dy - dx’ dy’ / rotate step params by 45 degrees *)
 2dup 1 0 2= if 1 1 2swap 2drop exit fi
 2dup 1 1 2= if 0 1 2swap 2drop exit fi
 2dup 0 1 2= if -1 1 2swap 2drop exit fi
 2dup -1 1 2= if -1 0 2swap 2drop exit fi
 2dup -1 0 2= if -1 -1 2swap 2drop exit fi
 2dup -1 -1 2= if 0 -1 2swap 2drop exit fi
 2dup 0 -1 2= if 1 -1 2swap 2drop exit fi
 2dup 1 -1 2= if 1 0 2swap 2drop exit fi ;

 : rot90 (dx dy - dx’ dy’ / rotate step params by 90 degrees *)
 rot45 rot45 ;

 : square (x y lx ly -- / draw square at x y)
 todo! ;

 : square (x y -- / draw square at x y)
 1 0 (start direction)
 ; x y 1 0
 4 for
 20 line rot90
 next 2drop 2drop ;

 : octo (x y -- / draw an octagon at x y *)
 1 0
 ; x y 1 0
 8 for
 20 line rot45
 next 2drop 2drop ;

 times 22*1024-($-block1) db 0

 ; need to debug
 : fsquare (x y n -- / draw filled square at x y with side length n *)
 >r
 2dup 1 0
 ; x y x y 1 0 r: n
 r> 0 do
 ; x y x y 1 0
 iimax
 ; x y’ x y’ 1 0 iimax
 line 4drop
 ; x y’
 1+ 2dup
 ; x y’+1 x y’+1

 1 0
 ; x y’+1 x y’+1 1 0
 loop 2drop 4drop ;

 : grid (-- / make a pattern *)
 cls
 20 20 20
 8 0 do
 ; x y’ 20
 3dup ii fg
 fsquare
 ; x y’ 20
 >r 30 + r>
 loop ;

 ; this is a very primitive recursive descent parser
 : palindrome (A n -- flag / checks if a string is a palindrome)
 ; if stringlength <= 1 just call it a palindrome
 dup 0 = if 2drop 1 exit fi
 dup 1 = if 2drop 1 exit fi
 ; check first and last letters then recurse
 ; A n
 >r c@+
 ; A+1 c r: n
 r> swap >r
 ; A+1 n r: c
 2 - 2dup +
 ; A+1 n-2 A+n-1 r: c
 c@ r>
 ; A+1 n-2 b c
 = not if 2drop 0 exit fi
 ; for debugging ." recurse.. "
 ; do recursion!
 palindrome ;

 : pal
 ." check: "
 pad accept pad count palindrome
 cr .s if ." palindrome!! " else ." nope " fi ;

 : showpal
 ." check: "
 ;pad 40 accept pad count
 pad accept pad count
 ; A n
 cr
 begin
 2dup
 ; A n A n
 palindrome if 2dup type space fi
 swap 1+ swap 1- ./ A+1 n-1
 dup 0 =
 until ;

 times 23*1024-($-block1) db 0

 : wc (xt -- n count words, not opcodes from word at xt)
 ; assume <5000 words
 5000 0
 do
 ; assume all ops at top of dict, bad assumption!
 dup xt>op if drop ii unloop exit fi
 xt+
 loop drop ;

 : allwords last @ wc ;
 ; count words defined in bytecode

/home/arjuna/sf/htdocs/books/osdev/os.asm Sun Mar 28 21:12:07 2021 72

 : bytewords last 4 - wc ;

 ; how many bytes do the opcodes occupy.
 : opspace [’] nop [’] exec - ;
 ; how much space do the bytecodes occupy.
 : bytespace [’] last [’] nop - ;
 : totalspace last @ ;

 : splash (-- / produces a colourful splash screen *)
 31 spaces 8 glow cr
 30 spaces 10 glow cr
 29 spaces 12 glow cr
 28 spaces 14 glow cr
 28 spaces 14 glow cr
 29 spaces 12 glow cr
 30 spaces 10 glow cr
 31 spaces 8 glow cr cr
 7 fg
 23 spaces ." Teatree, A ’Forthish’ System " cr cr
 13 fg
 20 spaces 6 fg ." Machine: " 13 fg mname cr
 20 spaces 6 fg ." Opcodes: " 13 fg
 opspace u. ." bytes"
 ; ’ nop literal ’ exec literal - u. ." bytes"
 10 fg ." (" [op’] nop u. ." opcodes)" 13 fg cr
 20 spaces 6 fg ." Byte codes: " 13 fg
 bytespace u. ." bytes"
 ; ’ last literal ’ nop literal - u. ." bytes"
 10 fg ." (" bytewords u. ." bytecode words) " 13 fg cr
 20 spaces 6 fg ." Total Size: " 13 fg last @ u. ." bytes"
 10 fg ." (" allwords u. ." total words) " 13 fg cr ;

 ./ splash

 times 24*1024-($-block1) db 0

 : size (show word size)
 wparse nfind dup
 if0 drop ." ?"
 else
 wsize ." (bytes): " .
 fi ; imm

 ; like unix "disk free"
 : df (--) final @ 0
 ." Free bytes/block: " cr
 do
 ii dup 6 fg
 u. [char] : emit 10 fg bfree u. ." "
 ; print 4 to a line
 ii 4 mod 3 = if cr fi
 loop ;

 ; display u words of data
 : dumpw (A u --)
 ; print mem address
 swap dup u. ." : " swap
 0 do @+ u. space loop drop ;

 ; prints out time taken given 2 clock-ticks values (18/sec) on stack
 ; this has a limit of +/- 52 minutes. takes 2 double values
 ; (D:t1 D:t2 --)
 : timer
 ; get rid of high clock value on stack
 drop swap drop swap - 55 u* u. ." milliseconds." cr ;

 ; do not change this word because it is being used to
 ; measure performance across different machines and different
 ; exec.x versions.

 : timeloop (n --)
 ; juggle number of loops
 >r clock r>
 dup u. ." 000 loops"
 begin
 1000 begin 1- dup 1 = until drop
 1- dup 1 =
 until drop ." took " clock timer ;

 ; the simplest dump, no asci chars
 : dump.basic (A n -- / display n bytes of memory *)
 ; print mem address
 swap dup u. ." : " swap
 0 do c@+ u. space loop drop ;

 times 25*1024-($-block1) db 0

 : 2over (a b c d -- a b c d a b /copy second double to top *)
 2>r 2dup 2r> 2swap ;

 ;A naive line drawing algorithm
 ;dx = x2 - x1
 ;dy = y2 - y1
 ;for x from x1 to x2 {
 ; y = y1 + dy * (x - x1) / dx
 ; plot(x, y)
 ;}

 ;
 ;
 ; gradient variables.
 var dx var dy

 ; Bresenhams algorithm would be better, or Xaolin Wus but
 ; for the time being, lets just use "naive"

 defer lineto
 : lineto.naive (a b c d -- / draw line from [a,b] to [c,d] *)
 4dup swap >r swap - dy ! r>
 ; a b c d a c
 swap - dx !
 2drop
 ; a b
 ; if line vertical do it separately
 dx @ 0= if
 ; a b
 dup dy @ +
 ; a b b+dy
 dy @ 0 > if swap fi
 do dup ii plot loop
 ;." 0 dx!! "
 drop exit
 fi
 over dup dx @ +
 ; a b a a+dx
 ; if dx<0 then adjust the order of the loop parameters
 dx @ 0 > if swap fi
 do
 ; a b
 2dup swap ii swap -
 ; a b b ii-a
 dy @ dx @ */ +
 ; a b b+dy(x-a)/dx
 ii swap plot
 ; a b
 loop 2drop ;

 ’ lineto.naive is lineto

/home/arjuna/sf/htdocs/books/osdev/os.asm Sun Mar 28 21:12:07 2021 73

 ; stores zero byte at location
 : c!0 (adr --) 0 swap c! ;

 : sspoints (x y n -- a b c d e f g h
 / vertices of square side 2n, midpoint x y *)
 >r
 ; x y r: n
 2dup swap r@ - swap r@ -
 ; x y a b r: n
 2swap
 ; a b x y r: n
 2dup swap r@ + swap r@ -
 2swap
 ; a b c d x y r: n
 2dup swap r@ + swap r@ +
 2swap
 ; a b c d e f x y r: n
 2dup swap r@ - swap r@ +
 2swap
 ; a b c d e f g h x y r: n
 2drop r> drop
 nop ;

 ; reverse line
 : rline (a b c d -- a b / trace line from {c,d} to {a,b} *)
 2swap 2dup >r >r lineto r> r> ;

 ; traces lines starting at point (x1,y1), ending at (xn,yn)
 ; This does not "close" the path
 : trace (xn yn ... x1 y1 n -- xn xn
 / trace lines between n points on stack *)
 1- 0 do rline loop ;

 times 26*1024-($-block1) db 0

 : emitn (char n -- emit char n times *)
 for dup emit next drop ;

 : utype (A n -- / type string with underline *)
 tuck type cr [char] - swap emitn ;

 : .u" (-- / print underline text *)
 post s" [call:] utype ; imm

 ; traces lines starting at point (x1,y1), ending at (xn,yn)
 ; This closes the path
 : ctrace (xn yn ... x1 y1 n -- / trace path between n points on stack *)
 dup 2swap 2dup >r >r
 ; ... n n x1 y1 r: x1 y1
 2swap drop trace
 r> r> lineto ;

 ; traces lines starting at point (x1,y1), ending at (xn,yn)
 ; This does not "close" the path
 : pplot (xn yn ... x1 y1 n -- / plot n points from stack *)
 0 do plot loop ;

 : rswap (r: a b -- r: b a / swap top 2 items on return stack *)
 r> r> r> swap >r >r >r ;

 : rvertex (x y w h -- a b c d e f g h
 / leave vertices of rectangle, midpoint [x,y], width=2w, heigth=2h *)
 >r >r
 ; x y r: h w
 2dup swap r@
 ; x y y x w
 - swap rswap r@ - rswap
 ; x y a b r: h w
 2swap

 ; a b x y r: h w
 2dup swap r@
 ; a b x y y x w r: h w
 + swap rswap r@ - rswap
 2swap
 ; a b c d x y r: h w
 2dup swap r@ + swap rswap r@ + rswap
 2swap
 ; a b c d e f x y r: h w
 2dup swap r@ - swap rswap r@ + rswap
 2swap
 ; a b c d e f g h x y r: h w
 2drop r> r> 2drop ;

 times 27*1024-($-block1) db 0

 ; 5 is a magic number, the data field is 6bytes after
 ; the (reverse) count field of the wordlist name.
 : .vname (A -- / print vocab name from pointer to data field A *)
 5 - rcount type ;

 ; this can be simplified. See the for/next loop in find.s/o
 : order (-- show wordlists in search-order & "current" *)
 s/o dup @ 2* +
 ; get name of wordlist
 ; L
 ." Search Order: "
 s/o @ 0 do
 ii 4 mod 0= if cr 3 spaces fi
 ; A’
 dup @ dup
 ; A’ B B
 ; print vocab name and last word in that list
 .vname @
 ; show last word if <> 0 or else empty
 ;dup if c> (.xt c>) else ." (empty) " fi
 c> (.xt c>)
 space 2 -
 loop drop cr
 ." current (def): " current @ .vname ;

 ; list all words in the dictionary
 ; need to modify this to search all words in all wordlist
 ; in s/o search order.
 ; Also, need a word wo (xt --) which list all words starting
 ; from xt address. Then a word
 ; ls/ Asm which lists all words in the Asm wordlist
 ; This can be something like
 ; also Asm context @ @ wo prev ;

 : ls (-- / list all words in dictionary search-order *)
 ; last @
 ; ll counts number of lines
 0 ll !
 ; loop through s/o pointers
 s/o @ 1+ 1 do
 ; get next vocab pointer from search order
 ii 2* s/o + @
 dup .yellow cr cr ." Words in vocab " .vname ." :" cr
 ." ------------------------"
 cr .white
 @
 dup 0= if ." (empty)" fi
 ; number of words
 0 nn !
 begin
 ; print 8 words to a line
 nn ++ 8 mod 0 = if

/home/arjuna/sf/htdocs/books/osdev/os.asm Sun Mar 28 21:12:07 2021 74

 cr
 ; print a prompt every n lines
 ll ++ 16 mod 0 = if
 .lgreen ." any key or ’q’ to quit>" key
 ; quit if ’q’ pressed
 [char] q = if unloop exit fi
 0 bg cr
 fi
 fi
 dup .xt
 space xt+ dup 0 =
 until drop
 loop ;

 ; when a word is not found we can try to loop through
 ; the blocks and find the missing word.
 ; also, show similar words in the dictionary
 : miss.more (n/xt/op 0 -- /handle word-not-found in dict *)
 cr 2drop >word
 ; A n
 5 fg type 4 fg ." not found " 2 fg [char] @ emit
 14 fg last @
 ; [L] get last from "current"
 .xt 7 fg cr
 order (show vocab search order)
 cr
 ;*** compile an exit even when an error occurs
 ; do "abort" here. This will stop more stuff loading
 ; after an error. An clear the return stacks etc.
 [op:] exit ;

 times 28*1024-($-block1) db 0

 : ?1- (n -- n-1/n / decrement n if n<>0)
 dup if 1- fi ;

 : boxtype (A n -- / type text surrounded by box *)
 tuck getxy
 ; n A n x y
 ?1- swap ?1- swap atxy
 ; n A n
 218 emit 196 swap emitn 191 emit over getxy
 ; n A n x y
 1+ >r swap 2 + - r>
 ; n A x-n-2 y+1
 atxy 179 emit
 ; n A
 over type 179 emit
 ; n
 dup getxy
 ; n n x y
 1+ >r swap 2 + - r>
 ; n x-n-2 y+1
 ; 2dup swap c> [. c> , . c>]
 atxy 192 emit
 196 swap emitn 217 emit ;

 : .b" (-- / print boxed text line *)
 post s" [call:] boxtype ; imm

 ; traces lines starting at point (x1,y1), ending at (xn,yn)

 (Double numbers, ie numbers on stack in form [a b] where
 b is high order item, 16bits, and also highest on stack)

 ; some ron geere double number defs

 : 2rot (a b c d e f -- b c e f a b /do rotate with doubles *)
 2>r 2swap 2r> 2swap ;

 : 2@ (A -- d / fetch double number from address A *)
 dup 2 + @ swap @ ;

 : 2! (d A -- / store double number at address A *)
 dup >r ! r> 2 + ! ;

 : 2con (define 32 bit double constant *)
 (looks a bit dodgy) ;
 ; con , does> 2@ ; imm

 ; this is called dminus in older forths.
 : dnegate (d -- -d / negate double number d *)
 todo! ;

 times 29*1024-($-block1) db 0

 ; do defined as source.
 ; : do [op’] >r dup c, c, here ; imm
 ; need to compile code which checks something
 : ?do [op’] >r dup c, c, here ; imm
 ; : (?do) ... ;

 : 0< (n -- f / leave true if n is negative *)
 todo! ;

 : d- (d1 d2 -- d3 / do d1-d2 double number subtraction *)
 dnegate d+ ;

 : d0= (d -- f / leave true flag if double number is zero *)
 or = ;

 : d0< (d -- f / leave true if double number negative *)
 swap drop 0< ;

 : d= (d1 d2 -- f / leave true flag if both equal *)
 d- d0= ;

 ; ’79 standard double compare.
 : d< (d1 d2 -- f /leave true flag if d1<d2, signed, else leave false *)
 d- d0< ;

 : d> (d1 d2 -- f /leave true flag if d1>d2, signed, else leave false *)
 2swap d< ;

 ; : dmin (d1 d2 -- d3 / leave minimum of 2 double numbers *)
 ; 2over 2over d< 0= if 2swap fi 2drop ;

 ; : dmax (d1 d2 -- d3 / leave maximum of 2 double numbers *)
 ; 2over 2over d< if 2swap fi 2drop ;

 times 30*1024-($-block1) db 0

 ; list words in "context"
 : words (-- / list words in 1st wordlist of search-order *)
 context @ @

 dup 0= if ." (empty)" fi
 ; number of words
 0 nn ! 0 ll !
 begin
 ; print 8 words to a line
 nn ++ 8 mod 0 = if
 cr
 ; print a prompt every 22 lines
 ll ++ 20 mod 0 = if
 1 fg c> > key
 ; quit if ’q’ pressed
 [char] q = if unloop exit fi

/home/arjuna/sf/htdocs/books/osdev/os.asm Sun Mar 28 21:12:07 2021 75

 0 bg cr
 fi
 fi
 dup .xt
 space xt+ dup 0=
 until drop ;

 ; just to test find.s/o
 : sof .s cr wparse .s cr find.so cr .s ; imm
 ; just to test wfind
 : wf .s cr wparse rot .s cr wfind .s ; imm

 : rev (A n -- / type string in reverse *)
 swap over + 1-
 ; n A+n-1
 swap 0 do
 ; A+n-1
 c@- emit
 loop drop ;

 ; another
 ; rev for dup ii 1- + @ emit next drop ;

 times 31*1024-($-block1) db 0

 ; Handles opcodes and fcalls
 ; Ansi forth "execute", maybe called "perform" in older forths
 ; "obuff" already has an EXIT opcode as its seconds byte,
 ; it is not necessary to write one there.
 : ex (... xt -- / execute word at xt *)
 dup xt>op dup if
 swap drop (op)
 obuff c! (make opcode callable)
 obuff pcall
 else (xt 0) drop pcall
 fi ;
 : perform ex ;
 : execute ex ;

 times 32*1024-($-block1) db 0

 : time (<name> -- ms / execution time of <name> in milliseconds *)
 wparse 2dup ." Timing " qtype cr
 ; start time, and save value on rstack
 clock drop >r
 nfind perform
 ; end time, and calculate time taken
 clock drop r> - 55 u* u. ." ms" ; imm

 : t/wfind 900 for buff count last @ wfind drop next ;
 : t/ffind 900 for buff count ffind drop next ;

 : codepage (A n -- / format source code from A, length n *)
 ; initialise counters (newlines, : and ;)
 0 nn ! 3 margin !
 ; if string length = 0 do nothing
 dup if0 2drop exit fi
 0 do
 ; A
 c@+
 ; A’+1 n
 ; ignore \r = asci 13. Below we use the trick of putting
 ; a dummy 0 on the stack to get an if/elseif/elseif/fi effect
 dup 13 = if drop 0 fi
 dup 10 = if
 drop 0 cr
 nn ++ 20 mod 0= if
 10 fg ." >" 7 fg
 key c: q = if

 unloop exit
 fi cr
 ; add margin here
 margin spaces
 fi
 fi
 ; colon, add margin
 ; margin += 2
 ; A’+1 n
 ; dup c: : = if margin 2 n++ drop fi
 ; dup c: ; = if margin -2 n++ drop fi
 dup if emit else drop fi
 loop drop ;

 times 33*1024-($-block1) db 0

 ; toggle a variable
 : toggle dup @ not swap ! ;

 var seeanon 0 seeanon !
 : debug (toggles debug information)
 seeanon @ not seeanon ! ;

 : welcome cr ." Forth Shell has started!" cr ;
 ; parse, compile and execute words. This is the interpreter.
 ; called ’quit’ in ansi forth. Hopefully "thru" has defined ." etc
 ; above
 : shell
 ; maybe set data and return stacks to 0 here...
 begin
 here>anon [op:] exit here>anon
 term dup accept count in0
 in,
 ; allow debugging of anonymous compilation
 seeanon @ if
 ; also show "dp" here.
 [’] anon word.
 fi
 anon pcall ok
 again ;

 9 33 thru (dont load 33 again! infinite loop)

 ; testing circle drawing
 69 load
 ; 34 60 thru
 ; ed the editor
 70 82 thru
 ;34 51 thru

 welcome
 shell

 times 34*1024-($-block1) db 0

 ; : ascline begin 196 emit loop
 ; 179 side. A 10x10 box is not square...
 ; We dont really need an x,y parameter for location. The
 ; box should just be printed wherever the cursor is.
 : abox (x y lx ly -- / draw asci box at [x,y] width lx, length ly *)
 4dup
 ; x y lx ly x y lx ly
 2swap atxy
 ; x y lx ly lx ly
 ; top-left corner
 218 emit
 drop 0 do
 ; x y lx ly
 196 emit

/home/arjuna/sf/htdocs/books/osdev/os.asm Sun Mar 28 21:12:07 2021 76

 loop
 ; top-right corner
 191 emit
 >r >r 1+ 2dup
 ; x y+1 x y+1 r: lx ly
 atxy r> r>
 ; x y+1 lx ly
 dup 0 do
 ; x y’ lx ly
 179 emit
 4dup drop swap >r + 1+ r>
 ; x y’ lx ly x+lx+1 y’
 atxy
 ; x y’ lx ly
 179 emit
 ; x y’ lx ly
 >r >r 1+ 2dup
 ; x y’+1 x y’+1 r: lx ly
 atxy r> r>
 ; x y’+1 lx ly
 loop
 >r >r atxy r> r>
 ; lx ly
 ; bottom left corner
 192 emit
 swap
 0 do 196 emit loop
 ; bottom right corner
 217 emit ;

 ; need to juggle the return pointer for function "2>r"
 ; 2>r is an opcode now, for speed, not minimalism
 : 2>R (a b -- r: -- a b / put 2 items on return stack *)
 r> swap >r swap >r >r ;

 : 4>r (a b c d -- r: -- a b c d *)
 ; can rewrite, in terms of 2>r opcode, but still must
 ; juggle the return pointer.
 r> swap >r swap >r swap >r swap >r >r ;

 ;vocab Matrix
 ;Matrix defs

 : ax+by (a b x y -- a*x+b*y / row column matrix multiplication *)
 swap >r * (a b*y r: x)
 swap r> * (b*y a*x)
 + ; (a*x+b*y)

 ; This word does the matrix multiplication (useful for point rotations)
 ; | a b | * | x |
 ; | c d | | y |
 : 2x2Matrix* (x y a b c d -- x’ y’ / left * 2x2 matrix a b c d *)
 4>r 2dup r> r>
 ; x y x y a b r: c d
 ax+by
 ; x y ax+by r: c d
 swap >r swap r>
 ; ax+by x y r: c d
 r> r> ax+by ;
 ; ax+by cx+dy

 ; uses rotation matrix to rotate point by left multiplication
 ; Matrix = | 0 1 |
 ; | -1 0 |

 : xyrot90 (x y -- x’ y’ / rotate [x,y] 90 degrees about 0 *)
 0 1 -1 0 2x2Matrix* ;

 times 35*1024-($-block1) db 0

 ;vocab Set
 ;Set defs

 ; an xyset is a set of integer pairs [x,y] with a length
 ; points: (0,0) (0,1) (1,1)
 ;

 : xyset: (-- / create a test xyset *)
 create 4 , 0 , 0 , 1 , 0 , 1 , 1 , 2 , 0 , does> ; imm

 ; remember the count or length of xyset is 16bit not 8bit char.
 : .xyset (A -- / show values of xyset *)
 @+ dup . c: : emit space
 ; A+1 n
 0 do
 ; A+1
 c: [emit
 @+ . c: , emit
 @+ . c:] emit
 ii 8 mod if0 cr 4 spaces fi
 loop drop ;

 ; length of xyset is 16bit not 8bit
 : asciglyph (c A -- / display xyset A as asci glyph with char c *)
 ; get current cursor pos
 getxy >r >r
 @+ 0 do
 ; c A’
 @+ >r @+ r>
 ; c A’+2 y x
 swap atxy over
 ; c A’+2 c
 emit (asci block char)
 loop 2drop
 ; restore cursor pos
 r> r> atxy ;

 : blockglyph (A --)
 219 swap asciglyph ;

 ; show an xyset as a pixel glyph.
 : xyglyph (A -- / display xyset A as monochrome glyph *)
 ; get the xyset length (2 bytes) and loop
 @+ 0 do
 ; A’
 @+ >r @+ r>
 ; A’+2 y x
 swap plot
 ; A’+2
 loop drop ;

 xyset: tt

 : txty (dx dy A -- / offset xyset at A by dx dy *)
 @+
 ; dx dy A+2 n
 0 do
 ; dx dy A’
 >r 2dup swap r>
 ; dx dy dy dx A’
 ; or use +! here ...
 dup @
 ; dx dy dy dx A’ x
 swap >r +
 ; store new x value in cell
 ; dx dy dy dx+x r: A’
 r> !+

/home/arjuna/sf/htdocs/books/osdev/os.asm Sun Mar 28 21:12:07 2021 77

 ; dx dy dy A’+2
 dup @
 ; dx dy dy A’+2 y
 swap >r +
 ; store new y value in cell
 ; dx dy dy+y r: A’+2
 r> !+
 ; dx dy A’+4
 loop drop 2drop ;

 : point (x y -- / print [x,y] as a point *)
 c> [swap . c> , . c>] ;

 ; remember the count or length of xyset is 16bit not 8bit char.

 times 36*1024-($-block1) db 0

 ; type text in rainbow colours
 : rainbow (A n --)
 ; string length is 0 so do nothing
 dup 0 = if 2drop exit fi
 0 do
 c@+
 ; A’+1 n
 ; ignore \r = asci 13. Below we use the trick of putting
 ; a dummy 0 on the stack to get an if/elseif/elseif/fi effect
 dup 13 = if drop 0 fi
 dup 10 = if drop 0 cr fi
 dup if ii 8 mod 1+ fg emit else drop fi
 loop drop
 ; set colour back to normal
 white fg ;

 : rb" (-- /rainbow coloured text *)
 post s" [call:] rainbow ; imm

 : dd nop ;

 vocab Tetris
 Tetris defs

 : animblock (A -- / animate a block falling *)
 12 0 do
 >r
 ; r: A
 ; show glyph
 ablock r@ asciglyph
 ; wait half a second
 500 ms
 ; erase glyph
 32 r@ asciglyph
 0 1 r@ txty
 r>
 ; A
 loop
 ablock swap asciglyph ;

 ; Tetris blocks are "tetronimoes", 4 orthogonally joined squares.
 ;
 : Iblock: (-- / tetris I block *)
 create 4 , 0 , 0 , 1 , 0 , 2 , 0 , 3 , 0 , does> ; imm

 : Sblock:
 ;(-- / tetris S block *)
 create 4 , 0 , 0 , 1 , 0 , 1 , 1 , 2 , 1 , does> ; imm

 xyset: b1
 Sblock: b2
 ; translate the set

 ; this line is causing crash if not immediate
 [35 7 b1 txty]
 [35 21 b2 txty]

 : ftetris (-- / a fake asci tetris *)
 ; put blocks in initial position
 ; use this below,
 ;35 7 b1 xysetat
 ;35 21 b2 xysetat
 3 vid
 ; hide the text cursor, its distracting
 6 7 cursor
 32 1 atxy 3 fg rb" Forth Tetris! "
 25 2 atxy 7 fg ." Score: 31517 (High Score!) "
 25 3 atxy 15 fg ." ---------------------------"
 7 fg 24 0 30 22 abox
 4 fg ablock b2 asciglyph
 ;6 fg ablock b1 asciglyph
 6 fg b1 animblock
 ; show the text cursor again
 7 0 cursor ;

 also Forth defs

 ; display next char at runtime
 : .c post [char] [op:] emit ; imm

 ; post s" [’] rainbow post call, ; imm
 ; post s" ’ rainbow literal post call, ; imm

 times 37*1024-($-block1) db 0

 : ball: (-- / create a xyset in shape of a ball *)
 create 16 , 1 , 0 , 2 , 0 , 3 , 0 ,
 0 , 1 , 1 , 1 , 2 , 1 , 3 , 1 , 4 , 1 ,
 0 , 2 , 1 , 2 , 2 , 2 , 3 , 2 , 4 , 2 ,
 1 , 3 , 2 , 3 , 3 , 3 ,
 does> ; imm

 : setn (A n -- x y / get the nth point [x,y] from set A [0 base] *)
 >r @+ r>
 ; A+2 m n
 ; if n => |S| then error
 2dup <= if
 ; some error number
 drop 2drop 1234 1234 exit
 fi
 ; A+2 m n
 swap drop 4 * +
 ; A+2+4n
 @+ swap @+ swap
 ; x y A+4+n
 drop ;

 : rot90set
 ;(A -- / rotate xyset A by +90 degrees about 0,0 *)
 @+
 ; A+2 n
 0 do
 ; A’
 dup
 ; 2@ here ??
 @+ swap @+ swap drop
 ; A’ x y
 xyrot90
 ; point
 ; A’ x’ y’
 ; a word or opcode 2! ??
 >r swap !+ r> swap !+

/home/arjuna/sf/htdocs/books/osdev/os.asm Sun Mar 28 21:12:07 2021 78

 ; A’+4
 loop drop ;

 ; This is different to Dneg, double number negate.
 : 2neg (x y -- -x -y / negate 2 stack items *)
 neg swap neg swap ;

 : xyset0 (A n -- dx dy / translate set A, nth point to 0,0 *)
 ; This word leaves the displacement on the stack so that
 ; it can be used by txty after rot90set.
 over >r
 ; A n r: A
 setn 2neg 2dup r>
 ; -x -y -x -y A
 txty ;
 ; -x -y

 : xyset00 (x y A -- dx dy / translate set A, so x,y--> 0,0 *)
 >r 2neg 2dup r>
 ; -x -y -x -y A
 txty ;
 ; -x -y

 : xysetat (x y A -- dx dy / translate set A, so point 0 --> x,y *)
 dup 0 xyset0 2drop
 ; x y A
 txty ;
 ; -x -y

 ; Terminology: ’’ is a transformation of a set
 ; ’ is a transformation of an xy point value
 ; ro’ is a rotation of point [x,y]
 ; ro’’ is a rotation of a set
 ; tr’ - translation of point [x,y]
 ; tr’’ - translation of an xyset/glyph
 ; We could call xysets psets (point sets)

 ; change this to
 ; : ro’’pi/2.about (A x y -- /rotates pset A about point [x,y] *)
 ; or even
 ; : ro’’about (A x y -- /rotates pset A about point [x,y] *)
 ; then do
 ; dup A n setn R’.about
 : rot90setn (A n -- / rotate 90 degrees about Nth point in set)
 ; A n
 swap dup >r swap
 ; translate A so that Nth point is at zero
 ; A n r: A
 xyset0 r@
 ; dx dy A r: A
 rot90set 2neg r>
 ; -dx -dy A
 txty ;

 times 38*1024-($-block1) db 0

 : arot (A n -- / animate xyglyph A rotation n times *)
 0 do
 ; A
 ablock over
 ; A c A
 asciglyph 500 ms
 ; A
 32 over asciglyph
 ; A
 dup 1 rot90setn
 ; A
 loop ;

 : aarot (A n -- / animate xyglyph A rotation n times *)
 0 do
 ; A
 ablock over
 ; A c A
 asciglyph 500 ms
 ; A
 32 over asciglyph
 ; A
 dup 1 rot90setn
 ; A
 dup 1 swap 1 swap txty
 ; A
 loop ;

 times 39*1024-($-block1) db 0

 ; : table create does> swap 2* + @ ; imm

 ; the "code>here" is a cludge. Or use sync.

 ; Using : .. create doesnt seem to be working.
 ; : table create
 ; This table contains sine values * 10000 for degrees 0-90
 [create sinetable
 0 , 175 , 349 , 523 ,
 698 , 872 , 1045 , 1219 ,
 1392 , 1564 , 1736 , 1908 ,
 2079 , 2250 , 2419 , 2588 ,
 2756 , 2924 , 3090 , 3256 ,
 3420 , 3584 , 3746 , 3907 ,
 4067 , 4226 , 4384 , 4540 ,
 4695 , 4848 , 5000 , 5150 ,
 5299 , 5446 , 5592 , 5736 ,
 5878 , 6018 , 6157 , 6293 ,
 6428 , 6561 , 6691 , 6820 ,
 6947 , 7071 , 7193 , 7314 ,
 7431 , 7547 , 7660 , 7771 ,
 7880 , 7986 , 8090 , 8192 ,
 8290 , 8387 , 8480 , 8572 ,
 8660 , 8746 , 8829 , 8910 ,
 8988 , 9063 , 9135 , 9205 ,
 9272 , 9336 , 9397 , 9455 ,
 9511 , 9563 , 9613 , 9659 ,
 9703 , 9744 , 9781 , 9816 ,
 9848 , 9877 , 9903 , 9925 ,
 9945 , 9962 , 9976 , 9986 ,
 9994 , 9998 , 10000 , code>here]
 ; the "code>here" is a cludge. Or use sync.

 ; This is very old code.
 : tsin (n -- a’ / get a value from the sinetable *)
 sinetable swap 2* + @ ;

 times 40*1024-($-block1) db 0

 : (sin) (x -- x’ /adjust sin for 90 < x < 180 *)
 dup 90 > if 180 swap - fi tsin ;

 : sin (x -- sin[x]*10000 / calculate scaled sin[x] from table *)
 360 mod
 dup 0 < if 360 + fi
 dup 180 > if
 180 - (sin) negate else (sin)
 fi ;

 : cos (n -- n’) 360 /mod drop 90 + sin ;

/home/arjuna/sf/htdocs/books/osdev/os.asm Sun Mar 28 21:12:07 2021 79

 : vals (show values)
 do
 ii dup . sin ." sin(x):" . cr
 ; ii sin(ii)
 loop ;

 : wave (n m -- /draw a sine wave from n degrees to m degrees *)
 do
 ii dup sin 80 / 170 + plot
 ; ii sin(ii)
 loop ;

 ; rotate point about 0,0 X degrees counter clockwise
 ; R = | cos(x) -sin(x) |
 ; | sin(x) cos(x) |

 times 41*1024-($-block1) db 0

 ; this is useful for rotations using sin/cos rotation matrix
 ; since the trig values are scaled by 10000. It assumes a & b
 ; are scaled by 10K
 : ax+by/10k (a b x y -- a*x+b*y/10k / matrix mult scaled by 10000 *)
 swap >r 10000 */ (a b*y r: x)
 swap r> 10000 */ (b*y a*x)
 + ; (a*x+b*y)

 ; Since trig functions in forth are usually scaled by 10000
 ; we need to unscale them when calculating the rotation
 ; This word does scaled matrix multiplication (useful for point rotations)
 ; | a b | * | x |
 ; | c d | | y |
 : 2x2Matrix*/10k (x y a b c d -- x’ y’ / left * 2x2 matrix a b c d *)
 4>r 2dup r> r>
 ; x y x y a b r: c d
 ax+by/10k
 ; x y ax+by r: c d
 swap >r swap r>
 ; ax+by x y r: c d
 r> r> ax+by/10k ;
 ; ax+by cx+dy

 : rmatrix (n -- c -s s c / make an n-degree rotation matrix * 10000 *)
 ; all trig values are * 10000 because basic forth has no
 ; floating point
 dup cos dup >r
 ; n cos r: cos
 swap sin dup neg swap r> ;
 ; cos -sin sin cos

 ; sin and cos are scaled by 10000

 : xyrotn (x y n -- x’ y’ / rotate [x,y] n degrees about 0 anti-clock *)
 rmatrix
 ; x y cos -sin sin cos
 2x2Matrix*/10k ;

 : xyrotnabout (x y a b n -- x’ y’ /
 rotate [x,y] n degrees about [a,b] anti-clockwise *)
 ; not not a set here, just x,y
 ; bug!
 >r xyset00
 ; x’ y’ dx dy r: n
 r> swap >r swap >r
 ; x’ y’ n r: dy dx
 rmatrix
 ; x’ y’ cos -sin sin cos
 2x2Matrix*/10k
 r> swap >r +
 ; x’’+dx r: dy y’’

 r> r> + ;
 ; x’’+dx y’’+dy

 times 42*1024-($-block1) db 0

 : rotset (A n -- / rotate xyset A n degrees about 0,0 anti-clockwise *)
 swap @+
 ; n A+2 m
 0 do
 ; n A’
 swap >r dup
 ; A’ A’ r: n
 @+ swap @+ swap drop
 ; A’ x y r: n
 r@
 ; A’ x y n r: n
 xyrotn
 ; A’ x’ y’ r: n
 ;2dup point cr
 ;.s cr
 >r swap !+ r> swap !+
 ; A’+4 r: n
 r> swap
 ; n A’+4
 loop 2drop ;

 ball: bb
 [250 150 bb txty]

 : swing (n -- animate with n iterations *)
 ;bb 1 xyset0
 ;250 150 bb txty
 0 do
 3 fg bb xyglyph
 200 ms
 0 fg bb xyglyph
 bb 3 rotset
 loop ;

 times 43*1024-($-block1) db 0

 ; should be able to write turtle graphics now with
 ; trig functions and lineto.

 ; sin(t) = (y1-y0)/r
 ; y1 = r.sin(t) + y0
 ; cos(t) = (x1-x0)/r
 ; y2 = r.cos(t) + x0

 : polar (x y t r -- x’ y’ / find co-ords distance r at angle t *)
 >r dup sin
 ; x y t sin(t)*10K r: r
 r@ 10000 */
 ; x y t r*sin(t) r: r
 swap >r +
 ; x r.sin(t)+y r: r t
 swap r>
 ; r.sin(t)-y x t r: r
 cos r> 10000 */
 ; r.sin(t)+y x r.cos(t)
 + swap ;
 ; r.cos(t)+x r.sin(t)+y

 : ray (x y t l -- / draw one ray from {x,y} length l, angle a *)
 ; x y t l
 2>r 2dup 2r>
 ; x y x y t l

/home/arjuna/sf/htdocs/books/osdev/os.asm Sun Mar 28 21:12:07 2021 80

 polar (x y x’ y’) lineto ;

 : ray.ball (x y l -- / draw rays from {x,y} length l *)
 0 nn !
 begin
 ; x y l
 >r 2dup 2dup
 ; x y x y x y r: l
 nn ++ 20 * r@
 polar
 ; x y x y x’ y’ r: l
 lineto r>
 ; x y l
 nn @ 20 * 360 >
 ; stop when > 360 degrees
 until 2drop drop ;

 ; : mm 100 0 do 100 ii + 100 ii + 30 ray.ball 200 ms loop ;

 [create somedata 0 , 175 , 349 , 523 , code>here]

 times 44*1024-($-block1) db 0

 : arc (a b r -- / draw 1 arc of a circle *) ;

 : ytri (x h -- y / height of right triangle *)
 ; y = sqrt(h^2-x^2)
 dup * swap dup * - sqrt ;

 : arc (a b r -- / draw 90 deg arc of radius r midpoint [a,b] *)
 ; x2+y2=r2, so y=sqrt(r2-x2)
 dup 1 do
 ; a b r
 3dup
 ; a b r a b r
 ii over
 ; a b r a b r ii r
 ytri
 ; a b r a b r y
 ; now add midpoint to (x,y)
 swap drop +
 ; a b r a b+y
 swap ii +
 ; a b r b+y a+x
 swap
 ; a b r x’ y’
 plot
 loop ;

 : circle (a b r -- / draw circle of radius r midpoint [a,b] *)
 ; x2+y2=r2, so y=sqrt(r2-x2)
 dup 1 do
 ; a b r
 3dup
 ; a b r a b r
 ii over
 ; a b r a b r ii r
 ytri
 ; a b r a b r y
 swap drop ii swap
 ; a b r a b x y
 rvertex 4 pplot
 loop 2drop drop ;

 : fcircle (a b r -- / draw filled circle of radius r midpoint [a,b] *)
 ; x2+y2=r2, so y=sqrt(r2-x2)
 dup 1 do
 ; a b r
 3dup

 ; a b r a b r
 ii over
 ; a b r a b r ii r
 ytri
 ; a b r a b r y
 swap drop ii swap
 ; a b r a b x y
 rvertex 4 ctrace
 loop 2drop drop ;

 ; not working because of immediate problems
 : iskey (k -- n flag /test for keypress)
 dup wparse
 dup 3 > if
 ; k k A u
 drop c@ = exit
 fi
 dup 1 = if
 drop c@ = exit
 fi
 dup 2 = if
 drop c@ = exit
 fi
 dup 3 = if
 drop c@+ c: ’ = if c@ = exit fi
 fi ; imm

 times 45*1024-($-block1) db 0

 ; : quoted? check if 1st & last are quotes ’

 times 46*1024-($-block1) db 0

 : rect (x y w h -- / draw rectangle with midpoint x y *)
 rvertex 4 ctrace ;

 : nrect (x y w h n -- / draw rectangle, midpoint x y, n thick *)
 0 do
 ; x y w h
 4dup ii + swap ii + swap rect
 loop ;

 ; might be better to rewrite this with a begin/until loop
 ; adding the degree increment each time. This would allow us
 ; to set a start angle for the points (so we could also do
 ; circular animations.
 : ccpoints (x y r n -- / get n points on circle radius r, mid [x,y] *)
 0 do
 ; x y r
 >r 2dup r>
 ; x y x y r
 360 iimax / ii *
 ; x y r x y r t
 swap >r r@ polar
 ; x y ... x’ y’ r: r
 2swap r>
 loop 2drop drop ;

 times 47*1024-($-block1) db 0

 ; standard forth
 : \ 10 parse 2drop ; imm

 : { (-- / we cant do local variables... yet *)
 [char] } parse 2drop ; imm

 ; Bumgarner sin function (job-82mar31)
 ; from Ron Geere: Forth: the next step
 ; not working!, not leaving anything on the stack

/home/arjuna/sf/htdocs/books/osdev/os.asm Sun Mar 28 21:12:07 2021 81

 var xs 0 xs ! (square of scaled angle)
 : kn (a b -- m / m=10000-ax*x/b ..common term in series *)
 xs @ swap / minus 10K */ 10K + ;

 : (sine) (theta -- 10K*sin /-15708<theta<15708 radians * 10K *)
 dup 10K */ xs ! (save x^2) 10K (start series)
 72 kn 42 kn 20 kn 6 kn 10K */ (times x) ;

 : sine (theta -- 10K*sin / 0-90 degrees only *)
 17435 100 */ (sine) ; (deg to radians*10K)

 \ sin(x)=x*(1-x^2/6 (1-x^2/20 (1-x^2/42 (1-x^2/72)))) approx

 ; at compile time, compile bytes into a buffer. At run-time
 ; fetch an item from the buffer. This is a good test for my
 ; forth machine, probably wont work.
 : cvector (n -- / compile n byte off stack into buffer *)
 create 0 do c, loop does> + c@ ; imm

 : vector (n -- / compile n 16bit cells off stack into buffer *)
 create 0 do , loop does> + @ ; imm

 ; create and initialise a list vector (see list: for comparison)
 ; from the stack. lvector has the format
 ; 16bit length, 16bit data cells (no capacity cell)
 : lvector (n -- / create and init list vector {length,data} *)
 create dup , 0 do , loop does> ; imm

 times 48*1024-($-block1) db 0
 ; create and initialise a capacity list vector (same as list:)
 ; from the stack. llvector has the format
 ; 15bit capacity, 16bit length, 16bit data cells
 ; use the words li/addu etc to manipulate it
 : llvector (c n -- / create and init list vector {cap,length,data} *)
 create
 \ 1st 2 bytes are capacity
 swap dup ,
 \ 2nd 2 bytes are length
 swap dup ,
 \ init n words from stack
 ; n
 0 do , loop
 ; set remaining capacity bytes to zero
 ; bug need to do c-l then allot
 ; c
 allot0
 does> ; imm

 ; There is always at least the "forth" (core?) namespace, which
 ; points to the core dictionary
 ;
 ; make NS point to the Forth NS. But when we add new words
 ; this becomes out of date, so create should update this,
 ; or we should just use Forth instead of "last/latest"
 ; Or make "last" do Forth @

 ; s/o is the search order buffer. Consists of a length
 ; (initially 1 ?) and a list of pointers to wordlists
 ; This is defined in bytecode now, feb 2019
 ; 16 buffer: s/o
 ; search order has nothing in it.
 ; s/o 0 swap !
 ; an nset is a set of 16 bit cells with length n (no capacity cell)
 : nset/dump (A -- / display contents of nset at A *)
 dup @ dup ." [" u. ." items] "
 dup 0= if drop exit fi
 ; A n
 swap 2 + swap

 ; A+2 n
 0 do
 ; A’
 @+ . space
 loop ;

 ; x and y steps for pong
 var xx var yy var delay
 : pong.header
 10 0 atxy
 .yellow ." Ball Bounce!" cr
 .white
 ." q: quit, r: reverse, f: faster, s: slower" cr
 ." x: xstep++, X: xstep--, y: ystep++, Y: ystep--" cr
 ; erase previous messages
 80 spaces cr 80 spaces cr 80 spaces cr
 0 3 atxy
 ." xstep=" xx @ .
 ." ystep=" yy @ .
 ." delay=" delay @ . cr
 ." stack: " .s cr ;

 times 49*1024-($-block1) db 0

 ; look up s/o and get last item
 ; in s/o buffer (s/o is like a stack, and last item is
 ; top of stack). Should context be a p* -> p* like current

 ; Defined in bytecode now
 ;: context (-- A /
 ; A is p* to first wordlist in search order *)
 ; s/o dup @ 2* + ;

 ; (pointer to data-field of wordlist for new definitions *)
 ; This will probably be defined in bytecode, so that "create"
 ; can use it to compile the dictionary.
 ; defined in bytecode
 ; var current

 ; eg: Forth ’ dup setlast
 ; This is useful for pretending that a new wordlist is
 ; an old one
 : setlast (xt -- / set last word in "context" wordlist *)
 context @
 ; xt A
 ! ;

 ; Make Forth the principal definition wordlist
 ; We need to do "defs" after setting lastword with
 ; setlast...
 ; also Forth
 ;Forth
 ;last @ setlast
 ; Forth defs

 : pong (-- / bounce a ball around)
 1 xx ! 1 yy ! 20 delay !
 cls
 pong.header
 200 200 115 115 7 nrect
 ; initial pong position
 130 180
 ;2000 0 do
 begin
 ; x y
 key? if
 key
 dup c: q = if cls ." goodbye!" cr exit fi
 ;iskey ’q’ if ." goodbye!" cr exit fi

/home/arjuna/sf/htdocs/books/osdev/os.asm Sun Mar 28 21:12:07 2021 82

 dup c: f = if
 delay @ 3 - 1 max delay !
 fi
 dup c: s = if
 delay @ 3 + delay !
 fi
 dup c: x = if xx ++ drop fi
 dup c: X = if xx -- drop fi
 dup c: y = if yy ++ drop fi
 dup c: Y = if yy -- drop fi
 c: r = if
 xx @ neg xx !
 yy @ neg yy !
 fi
 pong.header
 fi
 ; x y
 ; set initial colour of shape
 ; 6 fg 2dup square
 .lgreen 2dup 10 fcircle
 ; speed determined by millisecond delay
 delay @ ms
 ; delete the shape by setting colour to black
 .black 2dup 10 fcircle
 ; check y-bounds (vertical walls)
 ; x y
 dup 100 300 within ifnot
 yy @ neg yy !
 pong.header
 fi
 ; or check each wall one by one
 ;dup 200 >= if yy @ neg yy ! fi
 ;dup 20 < if yy @ neg yy ! fi
 swap
 dup 100 300 within ifnot
 xx @ neg xx !
 pong.header
 fi
 swap
 yy @ + swap xx @ + swap
 again ;

 times 50*1024-($-block1) db 0

 times 51*1024-($-block1) db 0

 : colorboxtype (A n -- / coloured box with text *)
 tuck getxy
 ; n A n x y
 ?1- swap ?1- swap atxy
 ; n A n
 218 emit 196 swap emitn 191 emit over getxy
 ; n A n x y
 1+ >r swap 2 + - r>
 ; n A x-n-2 y+1
 atxy 179 emit
 ; n A
 over rainbow 179 emit
 ; n
 dup getxy
 ; n n x y
 1+ >r swap 2 + - r>
 ; n x-n-2 y+1
 ; 2dup swap c> [. c> , . c>]
 atxy 192 emit
 196 swap emitn 217 emit ;

 : .cbox" (-- / print boxed coloured text line *)
 post s" [call:] colorboxtype ; imm

 times 52*1024-($-block1) db 0

 ; These always act on double precision numbers (2 items on stack)
 : # (ud â\200\223 ud’ / divide u by base,
 prefix remainder digit to pad as asci char *)
 nop ;
 : #s (ud â\200\223 ud’ / convert all remaining digits using # *)
 nop ;
 : hold (c -- / prefix char c to numeric string *) ;
 : sign (n -- / if n<0 prefix ’-’ to numeric string *) ;
 : <# (-- / clear the numeric output string. *) ;
 : #> (xd â\200\223 A u / discard xd and return numeric string *) ;

 times 53*1024-($-block1) db 0

 (Ideas from pforth)

 ;: comp? state @ if (not compiling) abort" ohoh" fi ;
 (
 If echo is on then forth code will be echoed as it
 is compiling.
)
 var echo
 ; I like this idea of not having a fixed buffer for
 ; pad. Can use for obuff. This doesnt work in my
 ; current forth because I use an anonymous buffer
 ; to compile to.
 : PAD here 128 + ;

 times 54*1024-($-block1) db 0

 times 55*1024-($-block1) db 0

 : s->d todo! ;

 ; This is normally a primitive too
 : rshift (n a -- n’ /right shift integer n, a places *)
 0 do 2/ loop ;

 ; this should be a primitive I think
 : um+ (n m -- d / leave n+m as double number *)
 2dup + >r (n m r: n+m)
 15 rshift swap 15 rshift and r> swap ;

 ; words from Ting/Muench eforth
 : hld (hold pointer in building numeric string) pad ;

 ; um+ can be used as a primitive for a number of words
 : negate (n -- -n)
 not 1 + ;
 : dnegate (d -- -d)
 not >r not 1 um+ r> + ;
 : d+ (d e -- d+e)
 >r swap >r um+ r> r> + + ;

 ; defining opcodes as words. This may be useful for creating
 ; systems with very few opcodes (and therefore, in theory)
 ; easier to port to new architectures. But we need a mechanism
 ; to actually register these words as opcodes in the opcode
 ; table, and to execute them.
 : ?dup (n -- n n | 0) dup if dup fi ;
 ; : not -1 xor ;
 ; : + (a b -- a+b) um+ drop ;
 ; : - negate + ;
 ; : = (n n -- F) xor if 0 exit fi -1 ;
 ; : here dp @ ;
 ; This pad is similar to pforths definition
 ; : pad here 80 + ;

/home/arjuna/sf/htdocs/books/osdev/os.asm Sun Mar 28 21:12:07 2021 83

 : @execute (A --) @ ?dup if execute fi ;

 times 56*1024-($-block1) db 0

 (classic numeric output words, from eforth, ting/muench)
 (ans forth seems to use doubles for these words)
 ; The words below assume pad is defined as
 ; : pad here 80 + ;
 ; So hld actually used the data space before pad to
 ; build the numeric string.

 ; this contains some cool trick to convert to hex digits
 ; without using a lookup table.
 : digit (u -- c / convert u to asci digit [0-15?] *)
 9 over < 7 and + 48 + ;

 ; is um/mod working?
 : extract (n base -- n’ c / extract 1 {right-most} digit from n *)
 0 swap um/mod swap digit ;

 var hld

 ; initialiase pad to the dictionary pointer. But dp should
 ; be called "dp" or "cp"
 : <# (-- /initialize numeric string buffer *)
 dp @ 80 + hld ! ;

 : hold (c -- / left-affix char c to numeric string buffer *)
 hld @ 1 - dup hld ! c! ;

 : # (u -- u’ / extract and left-affix 1 digit to hld *)
 base @ extract hold ;

 : #s (u -- 0 / extract all digits *)
 begin # dup 0= until ;
 ; eforth is: begin # dup while repeat

 : sign (n -- / prefix sign of n to numeric string *)
 0< if 45 hold fi ;

 ; this is crashing because pad is a buffer not : pad here 80 +
 : #> (w -- A n / leave address and count of numeric string *)
 drop hld @ dp @ 80 + over - ;
 ; The dp @ is a cludge, it should just be "here" but
 ; my "here" bounces around between the dictionary and the
 ; anonymous buffer, which needs to be fixed
 ;
 ; The eforth def is simpler because hld is initialised as pad
 ; drop hld @ pad over - ;

 times 57*1024-($-block1) db 0

 : str (n -- b u / convert signed integer to numeric string *)
 dup >r abs <# #s r> sign #> ;

 : .R (n +m -- / display int in m width field, right justified *)
 >r str r> over - spaces type ;

 : U.R (u +n -- / dislay unsigned int in n width field *)
 >r <# #s #> r> over - spaces type ;

 : U. (u -- / display unsigned integer in current base *)
 <# #s #> space type ;

 ; if base is 10 then display signed in otherwise show unsigned
 : DOT (n -- / display un/signed integer in current base *)
 base @ 10 xor if
 U. exit
 fi

 str space type ;

 : ? (A -- / display contents of memory cell *)
 @ . ;

 times 58*1024-($-block1) db 0

 ; display u bytes of data, better than dump
 : dumpx (addr u --)
 ; print mem address
 ; A u
 0 do
 ; swap dup u. ." : " swap
 ii
 ; print memory address and newline every 8 chars
 ; A ii
 8 mod not
 if cr 11 fg dup u. ." :" 15 fg fi
 ; A
 c@+ u. space
 ; A+1 c
 loop drop ;

 times 59*1024-($-block1) db 0

 ; Idea!! what about doing
 ; s" r> r> 1+ >r" source/compile
 ; as source

 times 60*1024-($-block1) db 0

 ; display all words in buffer
 : inwords (display all words in buffer *)
 term accept term count in0
 begin
 wparse 2dup type cr
 0= until ;

 ; Testing tick by accepting input and
 ; db ’ displaying the found execution token
 : try.tick (testing "tick")
 begin
 term accept term count
 dup 0 = if exit fi
 tick ./ 0/n/op.xt flag=0/1/2/3
 cr .s cr
 again ;

 times 61*1024-($-block1) db 0

 : ww. last @
 begin dup .xt space xt+ dup 0 = until drop ;

 times 62*1024-($-block1) db 0

 ; shortjump limited to +/- 128 bytes)
 : Again (+/-128 byte jump "again" *)
 [op:] jump here 1- - c, ; imm

 times 63*1024-($-block1) db 0

 : ffor (run: u -- / compiled "for", iterate u times *)
 [op:] dup [op:] >r [op:] >r here ; imm
 : nnext (compiled "next", +/-128 byte jump back to "for")
 [op:] rloop
 here 1- - c,
 [op:] r> [op:] r> [op:] drop [op:] drop ; imm

/home/arjuna/sf/htdocs/books/osdev/os.asm Sun Mar 28 21:12:07 2021 84

 ; short jump loop compiling all code (instead of using a helper
 ; function
 : Lloop (compiled short jump loop)
 [op:] r> [op:] r>
 [op:] 1+ [op:] 2dup
 ; 2>r is an opcode
 [op:] >r [op:] >r
 [op:] =
 [op:] jumpz
 here 1- - c,
 [op:] r> [op:] r>
 [op:] drop [op:] drop ; imm

 : lloop (compiled long jump loop)
 [op:] r> [op:] r>
 [op:] 1+ [op:] 2dup
 [op:] >r [op:] >r
 [op:] =
 [op:] jumpnz 5 c,
 [op:] ljump
 here 1- - ,
 [op:] r> [op:] r>
 [op:] drop [op:] drop ; imm

 times 64*1024-($-block1) db 0

 ; parse as source, also handle eol, 10 or end of input
 ; stream
 : Parse (char -- adr n)
 ; scan input stream for char and return length and address.’
 ; The current input stream (IN) is scanned for the next char’
 ; matching char. The parse position of the stream is advanced ’
 ; after this call. If not found, then parse position and 0’
 ; is returned.’
 >in dup 0= if drop exit fi
 ; c A n
 for
 ; c A’
 c@+ >r over r>
 ; c A’+1 c b
 = if (advance "in") fi
 next
 nop ;

 times 65*1024-($-block1) db 0

 var span
 ; basic version working
 : accept.span (A u -- / get text into buffer A, no more than u chars *)
 0 span !
 swap
 begin
 ekey
 1 = if drop else
 ; u A k
 dup emit
 dup 13 = if exit fi
 ; u A k
 over span ++
 ; u A k A s+1
 + c!
 ; u A
 dup span @
 ; u A A s
 swap c!
 ; u A
 over span @
 ; u A u s
 = if exit fi

 fi
 again ;

 times 66*1024-($-block1) db 0

 ; So the foreach loop has pointer+limit on return stack
 ; each iteration decrements/increments the point and checks
 ; against limit Address value.

 ; this foreach loop should be faster than for/next using ii
 ; hopefully. But slower than for/next manually advancing pointer

 ; adapt for "foreach" pointer iterator
 : foreach (run: A u -- / iterates pointer from address A, u times *)
 ; here calculate limit address A’ (ie A +/- 2*n)
 [op:] 2* [op:] over [op:] +
 ; A A’=limit-address
 ; put the pointer on top and the limit underneath
 [op:] >r [op:] >r here ; imm

 ; check for foreach ...
 ; The top rstack param is the return address for check
 : (check.foreach)
 r> r> 2 + r> 2dup >r >r = swap >r ;

 : (check.eachfor)
 r> r> 2 - r> 2dup >r >r = swap >r ;

 ; adapt for foreach
 : nextitem (long jump pointer loop)
 [call:] (check.foreach)
 [op:] jumpnz 5 c,
 [op:] ljump
 ; leave jump-back target on data stack, to be used by
 ; "nextitem"
 here 1- - ,
 [call:] (clean) ; imm

 times 67*1024-($-block1) db 0

 : wfind.slow (A n xt -- xt’|0 / find name at A starting search at xt *)
 begin
 ; A n xt
 >r 2dup r@
 ; A n A n xt r: xt
 ; this needs to be faster, so dont use xt>name
 xt>name
 ; A n A n B m r: xt
 ; parsing out s= for speed
 s=
 ; s= inline, but not much difference
 rot over
 ; A B v u v
 ; if lengths not equal, false. 2drop and drop are opcodes
 <> if 2drop drop 0 else ncompare fi

 ; A n F r: xt
 IF 2drop r> exit FI
 r>
 xt>name
 ; parse out "xt+" for speed
 ; xt+ code:
 drop 1- 1- @
 dup
 Until0 2drop drop 0 ;

 times 68*1024-($-block1) db 0

 ; test prefix with a loop.

/home/arjuna/sf/htdocs/books/osdev/os.asm Sun Mar 28 21:12:07 2021 85

 : t:prefix
 ." testing ’prefix’: double enter to exit." cr
 begin
 ." Text:" pad accept
 ." Prefix:" buff accept
 pad count buff count
 ;." stack: " .s cr
 dup not if exit fi
 prefix
 ;." stack: " .s cr
 if ." True!" else ." Not a prefix" fi cr
 again ;

 ; a loop to test search.
 : ..search
 ." testing ’search’: enter to exit." cr
 begin
 ." Text:" pad accept
 ." Search:" buff accept
 pad count buff count
 dup 0 = if exit fi
 ; A n P m
 search
 ; A n f
 ." stack: " .s cr
 if
 ." Found in ’pad’:[" pad 1+ u. ."]"
 ." at " drop u. cr
 else
 ." Not found" 2drop
 fi cr
 again ;

 times 69*1024-($-block1) db 0

 : summit (x y r -- a b) - ;
 : >east (x y -- x+1 y , one pixel to east) swap 1+ swap ;
 : >south (x y -- x y+1) 1+ ;
 : >west (x y -- x-1 y) swap 1- swap ;
 : >southeast >south >east ;
 ; this will fail for big numbers eg 400 squared
 : dist2 (a b x y -- d^2 , distance between 2 points squared)
 >r swap >r - dup * r> r> - dup * + ;
 ; idea, if the east error is less than southeast error
 ; then it will also be less than south error (at least
 ; for first quadrant of a circle.

 ; [a,b] center of circle radius ’r’
 : easterror (a b r x y -- error for east point)
 2>r -rot 2r> >east (r a b x-1 y)
 dist2 swap dup * - abs ;
 : s/easterror (a b r x y -- e)
 2>r -rot 2r> >southeast (r a b x+1 y+1)
 dist2 swap dup * - abs ;
 : southerror (a b r x y -- e)
 2>r -rot 2r> >south (r a b x y+1)
 dist2 swap dup * - abs ;

 : nextpoint (a b r x y -- x’ y’ find adjacent point of circle)
 5dup easterror >r
 5dup s/easterror dup r> (a b r x y e e e2)
 > if drop >east exit fi
 >r
 5dup southerror r>
 > if >southeast exit fi
 >south ;
 ; here if easterror<south.easterror then quit.

 times 70*1024-($-block1) db 0

 (a new circle drawer using errors)
 : ncircle (a b r --)
 3dup summit (a b r x y)
 begin
 ; a b r x y
 5dup rot drop
 2>r 2dup 2r> (a b a b x y)
 rot - abs >r - abs r>
 rvertex 4 pplot nextpoint
 5dup >r 2drop swap drop r> =
 until 4drop drop ;

 ; testing animation of a circle
 : anim.circle (--)
 .lgreen 50 for 100 ii + 150 50 ncircle next ;

 : xmirror (x y u -- x y x’ y, mirror point about x axis)
 >r 2dup swap r@
 ; x y y x u R: u
 - r> swap - swap ;

 ; could test xmirror
 : T{xmirror} nop ;

 : ymirror (x y u -- x y x y’, mirror point about y axis ’u’)
 >r 2dup r@ - r> swap - ;

 : 2ymirror ([a,b] [x,y] u -- a b a b’ x y x y’,
 mirror 2 points about y axis ’u’)
 -rot 2>r >r r@
 ; a b u R: u x y
 ymirror 2r> r> rot ymirror ;

 : ball (a b r -- a filled circle)
 3dup summit (a b r x y)
 begin
 ; a b r x y
 5dup rot drop
 ; a b r x y a b x y
 2swap >r xmirror r>
 2ymirror lineto lineto
 nextpoint
 5dup >r 2drop swap drop r> =
 until 4drop drop ;

 ; move cursor up one row (check for zero)
 : cur.up getxy 1- atxy ;
 ; move cursor down one row
 : cur.down getxy 1+ atxy ;
 ; move cursor left one (need to check for zero)
 : cur.left getxy swap 1- swap atxy ;
 ; move cursor right one
 : cur.right getxy swap 1+ swap atxy ;

 times 71*1024-($-block1) db 0

 : balls (testing ball)
 vmode
 cr ." Testing ball drawing..." cr
 16 for ii fg ii 30 * 200 15 ball next ;

 : ball.move
 vmode
 cr ." Testing ball animation..." cr
 100 for
 .green ii 100 + 200 15 ball 1 ms
 .black ii 100 + 200 15 ball

/home/arjuna/sf/htdocs/books/osdev/os.asm Sun Mar 28 21:12:07 2021 86

 next ;

 ; move the cursor around with arrow keys
 : arrow
 ; a video mode with a cursor
 3 vid
 ." arrow keys!! q to exit " cr
 begin
 ekey 1 =
 if
 dup 72 = if cur.up fi
 dup 75 = if cur.left fi
 dup 77 = if cur.right fi
 dup 80 = if cur.down fi
 drop
 else
 [char] q = if 16 vid exit fi
 fi
 again ;
 ; reset the video mode

 : 2var create 0 , 0 , does> ; imm

 ; keycodes and values
 72 con k.up
 80 con k.down
 75 con k.left
 77 con k.right
 81 con k.pgdn
 73 con k.pgup
 71 con k.home
 79 con k.end
 82 con k.insert
 83 con k.delete
 8 con k.back

 times 72*1024-($-block1) db 0

 vocab Asci.draw
 Asci.draw defs
 ; make variables for the asci characters to draw the box,
 ; this way we can use the same routines to draw boxes with
 ; different characters
 var ne.corner var topline var nw.corner var side
 var se.corner var botline var sw.corner
 var wjoin var ejoin

 : single/box
 218 nw.corner ! 196 topline ! 191 ne.corner ! 179 side !
 192 sw.corner ! 196 botline ! 217 se.corner !
 ; for title boxes with dividers...
 195 wjoin ! 180 ejoin ! ;

 : margin/box
 214 nw.corner ! 196 topline ! 183 ne.corner ! 186 side !
 211 sw.corner ! 196 botline ! 189 se.corner ! ;

 : double/box
 201 nw.corner ! 205 topline ! 187 ne.corner ! 186 side !
 200 sw.corner ! 205 botline ! 188 se.corner ! ;

 single/box

 : top (x -- / print top of box, width x)
 nw.corner @ emit 2 - for
 topline @ emit
 next ne.corner @ emit ;

 : sides (x -- / print 1 row of sides of box width y)

 side @ emit getxy >r + 2 - r> atxy side @ emit ;

 : bottom (x -- / print bottom of box, width x)
 sw.corner @ emit 2 - for
 botline @ emit
 next se.corner @ emit ;

 ; a horizontal line which divides a box
 : divider (x -- / horizontal box divider) ;

 times 73*1024-($-block1) db 0

 : nextrow (x -- / position cursor back one row under)
 getxy 1+ >r swap - r> atxy ;

 : linebox (x -- / a one line asci box of width x)
 dup top dup nextrow dup sides dup nextrow dup bottom ;

 ;single/box

 : drawbox (x y -- / an asci box with width x height y)
 over top for
 dup nextrow dup sides
 next
 dup nextrow bottom ;

 vocab Editor
 Editor defs
 ;(simple block editor, factored)

 ; either edit=0 or command=1 (like vi modes)
 var ed,mode
 ; current block being edited, also see blk
 var ed,block
 ; start address of buffer
 var ed,buffer
 ; a command buffer
 16 buffer: ed,command
 ; text insertion pointer (an address)
 var ed,insert
 ; buffer address of previous screen
 var ed,prev
 ; buffer address of next screen
 var ed,next
 ; buffer address of current screen
 var ed,screen
 ; default colour for block text
 var ed,tint
 ; colour for editing box
 var ed,boxtint

 0 con edit/mode 1 con com/mode

 : edit/mode? ed,mode @ edit/mode = ;
 : com/mode? ed,mode @ com/mode = ;

 : remaining ed,buffer @ 1024 + ed,screen @ - ;

 ; buffer end address
 : end ed,buffer @ 1023 + ;

 ; number of bytes after insert point
 : after end ed,insert @ - ;

 times 74*1024-($-block1) db 0

 ; address and remaining length of current screen
 ; probably dont need this word
 : ed,at ed,screen @ ed,buffer @ 1024 + ed,screen @ - ;

/home/arjuna/sf/htdocs/books/osdev/os.asm Sun Mar 28 21:12:07 2021 87

 : cursor? ed,insert @ = ;

 ; go to start of editing buffer
 : >start
 ed,buffer @ dup ed,screen ! ed,insert ! ;

 ; number of used bytes in buffer
 : bsize (A -- n) dup begin c@+ 0 = until swap - ;

 ; how many free bytes in editor buffer
 : buffer.free ed,buffer @ bsize 1024 swap - ;

 : firstchar? (A -- f) ed,buffer @ = ;

 ; cursor at the start of the buffer?
 : cur.firstchar? ed,insert @ firstchar? ;

 ; at the end of the buffer?
 : end? ed,insert @ ed,buffer @ 1023 + = ;

 : emit+ (A n -- A+1 n-1 / emit 1 char and advance *)
 dup 0= if exit fi
 ; set text colour
 ed,tint @ fg
 ; background colour if this char is at the cursor
 over cursor? if
 2 bg
 ; if buffer is full make cursor cyan
 buffer.free 2 < if 5 bg fi
 end? if 5 bg fi
 else 0 bg fi
 1- swap c@+ emit swap 0 bg ;

 ; print until next newline or maximum n chars, then place cursor
 ; just under start of line. Also highlight current insertion point.
 : textline (A n -- A+x n-x / print until next newline, place cursor *)
 ; save screen cursor pos
 getxy 2>r
 begin
 dup 0= if 2r> 2drop exit fi
 over c@ 10 = if
 1- swap 1+ swap
 ; adjust screen cursor
 2r> 1+ atxy
 exit
 fi
 emit+
 again ;

 : lines# (-- / screen lines below cursor)
 19 getxy swap drop - ;

 times 75*1024-($-block1) db 0

 (screen positions for messages)
 : at/mode 2 0 atxy ;
 : at/free 50 0 atxy ;
 : at/title 32 0 atxy ;
 : at/line+char 60 23 atxy ;
 : at/info 5 23 atxy ;

 : .info at/info
 ;.brown ." buffer*:" .green ed,buffer @ u.
 ; insertion point address
 ;.brown ." cursor*:" .green ed,insert @ u.
 ." command: " ed,command count type
 ; show char under cursor

 ." [asc=" ed,insert @ c@ u. ."]" ." stack depth:" depth u. ;

 : full? (-- f / is the edit buffer full?)
 ed,buffer @ 1022 + c@ 0 <> ;

 : newline? 10 = ;
 : null? 0 = ;

 ; working
 : cursor.line (/ line number of cursor)
 ; 0 exit
 cur.firstchar? if 1 exit fi
 1 nn ! ed,buffer @
 begin
 dup c@ newline? if nn ++ drop fi
 1+ dup ed,insert @ =
 until drop nn @ ;

 : screen/start? (-- f /is edit cursor at start of screen?)
 ed,screen @ ed,insert @ = ;

 : line<start (A -- A’ / address of 1st char on line)
 dup firstchar? if exit fi
 begin
 1- dup firstchar? if exit fi
 dup c@ newline? if 1+ exit fi
 dup ed,buffer @ < if ." error!" exit fi
 again ;

 times 76*1024-($-block1) db 0
 : line>end (A -- A’ / last char of line)
 begin
 1+ dup c@ null? if 1- exit fi
 dup c@ newline? if 1- exit fi
 again ;

 ; : cursor.topscreen? (-- f / is cursor at 1st line of screen)
 ; ed,cursor @ >startline

 : line<< (A -- A’ / start of previous line)
 line<start dup firstchar? if exit fi 1- line<start ;

 ; name clash with the other line>>
 : line>> (A -- A’ / start of next line)
 line>end 1+ dup c@ null? if 1- exit fi ;

 : screen.line<< (-- /scroll screen up one line)
 ed,screen @ line<< ed,screen ! ;

 : screen.line>> (-- /down one line)
 ed,screen @ line>> ed,screen ! ;

 : cursor.line<< (-- /cursor to start of prev line)
 screen.line<< ed,insert @ line<< ed,insert ! ;

 : cursor.line>> (--)
 screen.line>> ed,insert @ line>> ed,insert ! ;

 : screen.page>> (-- /down one page)
 ;19 for screen.line>> cursor.line>> next ;
 19 for cursor.line>> next ;

 : screen.page<< (--)
 ;19 for screen.line<< cursor.line<< next ;
 19 for cursor.line<< next ;

 : linechar (-- cursor offset for current line)
 ed,insert @ dup line<start - 1+ ;

/home/arjuna/sf/htdocs/books/osdev/os.asm Sun Mar 28 21:12:07 2021 88

 times 77*1024-($-block1) db 0

 : .freebytes (-- free bytes message)
 at/free .blue ." (free " .lblue buffer.free u. .blue ." /1024)"
 full? if .lblue 6 bg ." block full!" 0 bg fi ;

 : .mode (-- / show editor mode)
 at/mode .pink ." mode:" .brown
 edit/mode? if ." edit" exit fi
 com/mode? if ." command" exit fi ." ??" ;

 : .title at/title .lgreen ." DISK BLOCK " ed,block @ u. ;

 : .line+char at/line+char
 .pink ." line " cursor.line u.
 ." char " linechar . ;

 : screen (A n -- A’ n’ / display screenful of text *)
 lines# 2 - for textline next ;

 : lines (A n x -- A’ n’ / display x lines of text *)
 for textline next ;

 times 78*1024-($-block1) db 0

 also Asci.draw

 : edit/box (draw the edit box)
 ed,boxtint @ fg 0 1 atxy 80 20 drawbox ;

 : layout (-- / display current block screen in editor layout *)
 cls
 .mode .title .freebytes .info .line+char
 edit/box
 ; put text in the box
 1 2 atxy ed,at 19 lines 2drop ;

 : >edit/mode
 edit/mode ed,mode !
 0 ed,command !
 purple ed,boxtint ! white ed,tint ! layout ;

 : >com/mode
 com/mode ed,mode !
 grey ed,boxtint ! grey ed,tint ! layout ;

 : startup
 0 ed,command !
 margin/box >edit/mode ;

 ; load and initialise variables for block editing
 : getblock (b -- A)
 dup ed,block !
 block
 ; buffer start pointer
 dup ed,buffer !
 ; current screen address
 dup ed,screen !
 ; previous screen address
 dup ed,prev !
 ; init insertion point to somewhere
 dup 3 + ed,insert ! ;

 ; last address in the buffer
 : buff>> ed,buffer @ 1024 + ;

 : char<< (back 1 char in buffer)

 cur.firstchar? if exit fi
 ed,insert --
 ; skip over newline char
 c@ 10 = if ed,insert -- drop fi
 ; go back to start (should be one screen)
 ed,insert @ ed,screen @ < if >start fi ;

 : char>> (forward 1 char in buffer)
 ;ed,insert @ ed,buffer @ 1024 + = if exit fi
 end? if exit fi
 ed,insert ++
 ; skip over newline char
 c@ 10 = if ed,insert ++ drop fi
 ed,insert @ ed,next @ = if screen.page>> fi ;

 ; need to do limit checks here...

 times 79*1024-($-block1) db 0

 : ins (k -- / insert char k)
 ; check for buffer full
 full? if drop exit fi
 ; change carriage return to newline
 dup 13 = if drop 10 fi
 ed,insert @ dup 1+ after 1- cmove
 ed,insert @ c! ed,insert ++ drop ;

 ; bug when buffer full
 : delete< (-- / delete 1 char left of insert)
 cur.firstchar? if exit fi
 ed,insert @ dup 1- after 1- cmove
 ed,insert -- drop ;

 : delete> (-- / delete 1 char right of insert)
 end? if exit fi
 ed,insert @ 1+ ed,insert @ after 1- cmove ;

 ; go to end of editing buffer
 : >lastpage
 ed,buffer @ dup bsize + ed,insert !
 ed,insert @ 50 - ed,screen ! ;

 : lastchar (A n -- last char of string) + 1- c@ ;

 times 80*1024-($-block1) db 0

 : next/block ed,block ++ getblock layout ;
 : last/block ed,block -- getblock layout ;

 : do/command (-- performs an editor command)
 ; just print com buffer
 ed,command count
 dup 0= if 2drop exit fi
 2dup s" i" s= if >edit/mode 0 ed,command ! fi
 2dup s" h" s= if char<< 0 ed,command ! fi
 2dup s" l" s= if char>> 0 ed,command ! fi
 2dup s" j" s= if cursor.line>> 0 ed,command ! fi
 2dup s" k" s= if cursor.line<< 0 ed,command ! fi
 2dup s" J" s= if screen.page<< 0 ed,command ! fi
 2dup s" K" s= if screen.page>> 0 ed,command ! fi
 2dup s" n" s= if next/block 0 ed,command ! fi
 2dup s" N" s= if last/block 0 ed,command ! fi
 lastchar newline? if 0 ed,command ! fi ;

 times 81*1024-($-block1) db 0

/home/arjuna/sf/htdocs/books/osdev/os.asm Sun Mar 28 21:12:07 2021 89

 ; simple block editing
 : ed (n -- / edit block n *)
 startup getblock
 layout
 begin
 ; check if key pressed
 key? if
 ekey
 if
 ; special keys (arrow etc)
 ; k
 dup k.left = if drop char<< 0 fi
 dup k.right = if drop char>> 0 fi
 dup k.up = if drop cursor.line<< 0 fi
 dup k.down = if drop cursor.line>> 0 fi
 dup k.pgdn = if drop screen.page>> 0 fi
 dup k.pgup = if drop screen.page<< 0 fi
 dup k.home = if drop >start 0 fi
 dup k.end = if drop >lastpage 0 fi
 dup k.delete = if drop delete> 0 fi
 drop
 else
 ; "normal" keys
 ; escape goes to command mode or exits in com/mode
 dup esc = if
 com/mode? if drop exit fi
 edit/mode? if >com/mode drop 0 fi
 fi
 dup k.back = if drop delete< 0 fi
 ; insert char k at ed,insert
 dup 0 <> if
 edit/mode? if ins fi
 com/mode? if
 ; actually here add the key stroke to
 ; a command buffer and check for valid command
 ; execute, then empty command buffer. This
 ; allows multiple char commands eg ’dd’ delete
 ; line
 ed,command s+c do/command
 ;dup [char] i = if >edit/mode fi
 ;dup [char] j = if screen.line>> fi
 ; drop
 ; here give unknown command status message?
 fi
 else drop
 fi
 fi
 ; only redraw the text if a key is pressed
 layout
 fi
 again ;
 also Forth defs

 times 82*1024-($-block1) db 0
 times 83*1024-($-block1) db 0

 %endif ; }code

 ; the %if 0 trick below allows including forth source code without
 ; hundreds of "db" lines. But this source needs to be preprocessed
 ; to insert the dbs before every line

 %if 0

FORTH CHESS NOTES

 A sketch of some chessy words. Before implementing this, we
 need working vocabularies, also probably a block editor
 . See also the chess.txt file in the folder "osdev" for more chess code.

 board: 0-11, 12-23, 24-35 ...
 .square (n --) print a square number (12*8 board: 0-97) in
 chess algebraic eg a3, b2 h1.
 .move (from to --) print a chess move where from and to are squares
 on a 12*8 board.
 .game (C --) display the state of the game object, including the
 board and pieces, the moveVector (Pvector), the squareVector (current
 move piece or square).
 move>> (C -- from to) the next legal move for game "C"
 The move is returned on the stack. The game structure C is not
 altered (move+ does that). This will return 0 0 if there are no
 more legal moves on the board for the current player
 move+ (C from to --) update the board position of C with the
 given move. The Pvector in the C game object will be advanced, or
 the Svector (current piece/square) will be advanced with piece+.
 piece>> (C -- square) the next piece on the board for the player colour
 This will return 0 if no more pieces to check for the current player
 The C game object is not altered (piece+ does that)
 piece+ (C -- square) update the current piece of position C with the
 given move
 piece vectors:
 : vknight [n c, 1 c, 2 c, ... 0 c,] ;
 : vpawn [...] ;
 The structure of the piece vector is the displacement value, (eg +12 for a
 white pawn), then the multiplier (eg 4 for a rook moving 4 squares), and
 then the multiplier limit (one more than the maximum value).

 When C move+ executes it updates the value of Pvector in the game object,
 either by increasing the multiplier by one, or by advancing the Pvector
 pointer to the next piece direction (Pvector + 3), or by calling C piece+
 (if the current piece has no more legal moves... ie the termination 0 of the
 vector has been reached).

 piece vector table:
 : vtable 2 c, ’ vwpawn c, 6 c, ’ vknight c, etc ...];

 The piece vector table is used to reestablish the Pvector after
 C piece+ is called (point to the correct piece vector for the current
 move square).

 IDEAS FOR WORDS

 A word to tell if a character is a digit.
 : ?digit (c -- flag) [char] 0 [char] 9 1+ within

 words (--) list all the words in the dictionary in search order
 quit
 this is the standard forth repl loop. ie read evaluate print
 loop. It is a strange name and I will call it "shell" instead.
 The quit loop allows the user to type and execute commands.
 and compile new words.

 d. (d --) display the top 2 stack items as a signed
 double precision integer.
 d+ d2* d2/ double precision integer operations
 The high cell is the high order byte of the double number.

 m* (n1 n2 -- d) multiple n1 by n2 and leave double precision
 result d on stack

 var creates a new variable
 : var (--) create
 we could define colon : with an immediate create.
 eg [create] : ... source ;
 : bl 32 ; put a space character on the stack (20H)

 ; ideas for words

/home/arjuna/sf/htdocs/books/osdev/os.asm Sun Mar 28 21:12:07 2021 90

 of3 (a b c n -- n/0)
 if n == a or b or c return that value, otherwise return 0.
 : of3 dup >r = if drop drop r> exit fi
 r> dup >r = if drop r> exit fi
 r> dup >r = if r> else r> drop 0 fi

 flags (-- flag-reg)
 put the overflow/carry etc flags register on the stack.
 I always wonder why standard forths dont have this. How
 do you know when an overflow or carry occurs? How can you
 call forth a virtual machine if it does not have this?

 ; input stream
 >in (-- a-addr)
 return address containing offset in characters from the
 start of the current input source to the start of the
 current parse point. In the current forth, ">in" works
 differently. Need to think about this design.

 evaluate (... addr u -- ...)
 set input source to addr with length u. set >in to zero etc
 The current forth calls this in0 or setin and works differently
 A similar word might be "source" or "load".

 parse <text> (char -- addr n)
 parse text at starting at current parse point (>in) using
 char as the delimiter. Also copy to temp location. But
 current forth is different. Word is not copied. Also we need
 a wparse which parses to any whitespace (eg newline is a word
 delimiter too!). Maybe parse should just update the >in variable
 as well which should make things simple.

 (a comment) brackets for multiline comments
 a definition of "(" but I may parse bracket comments until a dot .
 so as to be able to write more "literate" forth.
 : (char) parse/word ...

 word (char - c-adr n) the same as parse but skip all
 leading occurences of char. My implementation is call WPARSE
 and works slightly differently (only parses on whitespace)

 ;*** stack
 over (a b -- a b a)
 nip (a b -- b)
 rot (a b c -- b c a)
 tuck (a b -- b a b)

 ; characters
 bl (-- 20H) return asci char 32 which is a space.

 char n (-- char)
 put the asci value of the first character
 in the next word in the input stream on the stack.
 In the current forth, this will be an immediate word.
 Not working in : COLON defs, needs to push a literal
 In many forths [char] must be used in : definitions.
 This is because the current forth compiles even words
 entered interactively.

 ;*** Strings
 ; we can implement string functions by compiling right in the
 ; midst of the current word and compile a JUMP over the string
 ; if necessary
 ," compile a string at current position in data-space (at "here")
 s" compile a string and put its address and length on stack at
 runtime
 ." compile a string and print it out at runtime.

 search

 find one string in another

 ; text display
 space
 display one space on terminal
 spaces (n --)
 display n spaces on terminal
 cr
 emit one newline/ carriage return to terminal

 ; time and date
 ms (u --)
 wait for u milliseconds
 time&date (-- secs mins hours days months years)
 return a structure representing time and date

 ; arithmetic
 : */ (a b c -- a*b/c).
 multiply 3TOS by NOS, keeping precision (double?) and then
 divide by TOS.

 ; mathematics
 : min (a b -- min)
 returns the lowest number of "a" and "b" (but signs ?).
 : max (a b -- max)
 returns the maximum number of "a" and "b".
 : mod (m n -- p)
 the modulus of m with n.

 Euclids greatest common divisor (after R.V.Noble)
 This is amazingly succinct. And recursion works!
 : gcd (a b -- gcd) ?dup if tuck mod gcd fi ;

 ; sum of 1..n arithmetic series (n --); eg 100 asum = 1+2+3...+100
 : sum 0 do ii 0 = if 0 fi ii + loop ." sum = " u. ;
 ; or eg sum = n*(n-1)/2
 : sum dup 1- u* 2 / ;

 The following gives pi to 2 decimal places, scaled by 100
 : pi 35500 113 / ;

 Better, if double arithmetic is available
 : pi 103993. 33102. / ;

 pi.approx ()
 pi=4/1-4/3+4/5-4/7+4/9-4/11 an infinite series, but this
 may take 500000 iterations to get to 4 decimal places
 In forth we can scale by 10000 to get 5 decimal places
 See also the inverse tangent function.

 : 40K 40000 ;
 : pi.approx (-- pi-ish)
 0 1
 begin
 dup 40K swap / swap >r + r> 2 +
 dup 40K swap / swap >r + r> 2 +
 dup 64001 =
 until drop ;
 The code above does 64K iterations quickly but only gets to
 2 decimal places accurately ie 31407 (3.1407). Also we scale the result
 by 10K because forth doesnt have floating arithmetic. We really
 need double arithmetic (32 bit, 2 cells) to get a better
 approximation

 ; ans 94 forth word
 : within (n a b)
 return true != 0 if a <= n < b, otherwise return false==0
 notice <b not <=b !

/home/arjuna/sf/htdocs/books/osdev/os.asm Sun Mar 28 21:12:07 2021 91

 twixt (a b n)
 return true != 0 if a <= n <= b, otherwise return false==0
 can be implemented as ": twixt dup >r min max r> = ;"
 I have used the reverse names compared to those used by
 Ron Geere, since "within" is now a fairly standard word
 with its parameter order.

 squareroot (n -- n^0.5)
 use (n/x + x)/2 for successive approximations

 ; This is very cool and gets a good approximation within about
 ; 6 or so iterations.
 : approx (n x -- n x’)
 gets the next approximation to the square root, from ron geere.
 over over / + 2 / ;
 : sqrt (a -- b)
 return b, the approximate square root of a (maximum 32767 if the /
 division operator is signed, or else 64K if not),
 this just does the iterations of the "approx" word.
 60 5 0 do approx loop swap drop ;

 ;*** execution
 execute (... xt -- ...)
 execute word specified at address xt. Called ’pcall’ in this
 forth

 recurse (--)
 append execution behaviour to current definition to allow
 for recursive functions. In this implementation words can just
 call themselves eg:
 : gcd (a b -- gcd) ?dup if tuck mod gcd fi ;

 ; dictionary and defining words
 state (-- addr)
 return address of state variable (either compile or run...)
 This is a way to implement the [] words which in this version
 of forth will make all words immediate when between "[" and "]".

 [(--)
 Enter "immediate" state. All words are executed, not compiled
 In standard forths, these are called "compile" and "interpret"
 states.
]
 leave "immediate" state. All words are compiled, unless they
 are marked immediate in their control bits (1st bit of the
 name count).

 literal (n --)
 compile value n so that value n is put on the data stack
 at run-time. In this forth there is also and opcode LITERAL
 which could be confusing although they do almost the same
 thing.

 compile, (xt --)
 append execution behaviour of xt to current definition.
 But because I am using opcodes as well, I have modified this
 word. Was going to call "item," because my version also
 compiles literal numbers. "opcode," is just "c,"

 : unused (-- u)
 return number of bytes of memory remaining for new dictionary
 entries.

 : free first here - . ." bytes cr ;
 an older name for "unused".
 where first is the address of the first disk buffer.

 >body (xt -- addr)
 given execution token for a word, return the start of

 the parameter field (which is just after code). But
 current forth doesnt maintain a link to parameter field
 normally.

 : ’ <name> (-- xt)
 search dictionary for name and return execution token
 example: A table of function pointers
 [create] buttons ’ start , ’ slow , ’ fast , ’ finish

 : allot (n --)
 allocate u bytes of data-space, beginning at the next available
 location. Normally used immediately after "create".
 here + here! ;

 create <name>
 compile "name" in the dictionary and put address on stack
 at runtime (no data space is allocated). Because all words
 are first compiled in this forth we need an immediate version
 [create] to use this outside of a : definition.
 Or use [create] name ...
 This was called "<builds" I believe in figforth or early
 forths.

 does>
 really important word. Allows the creation of new defining words
 (eg "constant") that have a special behaviour.
 Needs to be used with create. Implentation is slightly tricky
 because no room in new word code field for a fcall to the
 does> code. So need to code a jump after the parameter field.
 Compiles a call to following words in defined words.
 * create a constant defining word
 : constant create 1 allot does> @ ;

 buffer: <name> (n --)
 create a dictionary entry for "name" associated with n bytes of
 data-space.
 create allot ;

 dump (adr +n --)
 display the contents of a memory region
 of length n. print address on left and 8 values per line
 in hex values or current base.

 ;*** blocks and buffers
 list (n --)
 display the contents of disk block "n" (1K of source code).
 blocks are good because no file system is required.

 buffer (n -- addr)
 return address where block n may be loaded. No read is done.
 A disk write is done if necessary. Buffer manages a list
 of buffers and blocks and finds a suitable place to put the
 requested disk block, but it doesnt actually read it into
 memory.

 block (n -- addr)
 return buffer address containing disk block n. Data is
 read if necessary. No write is done

 update (--)
 mark the last disk block accessed as having changed data
 (needs to be written to disk). This could be stored in
 the last byte of the block itself

 load (n --)
 load disk block (1024bytes) "n" and interpret the contents
 of the block as forth source code.

/home/arjuna/sf/htdocs/books/osdev/os.asm Sun Mar 28 21:12:07 2021 92

 flush
 ensure all updated buffers are written to disk and free
 all buffers.

 // create a dictionary entry for name associated with 1 cell
 // eg: variable data 6 data !
 : variable (--) create 1 allot ; immediate

 // create a new variable and assign a value to it.
 : value (n --) create , ; immediate

 : to (newval to name)
 // a constant value
 : constant create , does> @ ; immediate

 %endif ; 0

