
A MORON'S GUIDE TO ADC ON THE BUTTERFLY v2.2

by RetroDan@GMail.com

 TABLE OF CONTENTS:

1. MEASURING RESISTANCE WITH ADC
2. THE WAIT FOR CONVERSION METHOD
3. THE FREE RUNNING MODE
4. THE LEFT ADJUSTED OUTPUT MODE
5. THE INTERRUPT METHOD

The purpose of this tutorial is to learn about Analog-to-Digital conversions by using a Light
Dependant Resistor connected to the Butterfly Board. With this we construct my version of the
Theremin Aerophone, an instrument used in classic science fiction movies of the past.

If you are lucky enough to have an older Butterfly Board with an LDR then you can skip the next
section on installing one. I was sad to see that my newer batch came without an LDR attached.

I misplaced my collection of LDRs so I resorted to pulling them out of $1 automatic night lights I
purchased at the local dollar store. To connect it to the Butterfly Board, look at the top left-hand
side of the board and at the top you will see four empty holes in a circle above the LCD screen:

 .------------------------
 | o
 | o o AVR Butterfly
 | o
 | .-------------------.
 | | LCD SCREEN |
 | | |

We are going to solder our LDR to the holes in the 6 & 12 O'Clock positions:

 .------------------------
 .------------->*
 LDR(Z) | o o AVR Butterfly
 `------------->*
 | .-------------------.
 | | LCD SCREEN |
 | | |

A Light Dependent Resistor (LDR) is a device that changes its resistance depending on how much
light enters its active area. To read that resistance we are going to use the Analog-to-Digital (ADC)
in the Butterfly's ATMega169 chip. If you can't get an LDR you can substitute a variable resistor
(Potentiometer).

CHAPTER 1: MEASURING RESISTANCE WITH ADC

An Analog to Digital Converter (ADC) can turn an analog signal into a digital one. It does this by
measuring voltage on its input pin. Not only can they convert an analog signal like music into a
digital format, but they can also be used to measure resistance.

ADCs are not mysterious, they often work by measuring how long it takes to charge a capacitor,
keeping track of time with a counter. The result is a digital number that correlates to the applied
voltage at the input.

If we connect a resistor between an ADC input pin to ground and if the internal resistor is active we
get a cicuit as follows:

 Vcc
 | |
 | Z INTERNAL
 | Z PULL-UP
 | Z RESISTOR
 | |
 ADC2/PF2 |
 +-------------+-->[ADC]
 |
 Z |
 RESISTOR Z | (ATTINY13)
 Z |
 |
 GRND

The two resistors form a voltage divider and the voltage at the input pin will be dependant on the
value of our variable resistor:

 3VDC
 |
 Z INTERNAL
 Z RESISTOR
 Z
 |
 +---------> 0-3VDC TO ADC
 |
 VARIABLE Z |
 RESISTOR Z<--' (A TYPICAL VOLTAGE DIVIDER)
 (LDR) Z
 |
 GROUND

Below is a block diagram of the ADC in the Butterly. A multiplexer
(MUX) selects one of eight inputs to be fed into the ADC. A
prescaler determines the speed of the conversion. The output is
ten bits wide, so the lowest eight bits go into the ADCL register;
and the ADCH register holds the remaining high bits in its low
end:

 .---------. .-----.
 | INPUT | | ADC |=====>[------98]ADCH
ADC0 -->|PF0 MUX |===>| | [76543210]ADCL
ADC1 -->|PF1 | | |
ADC2 -->|PF2 | | |<-- TIMER-PRESCALER
ADC3 -->|PF3 | `-----'
ADC4 -->|PF4 |
ADC5 -->|PF5 |<------------- INPUT-SELCTOR
ADC6 -->|PF6 |
ADC7 -->|PF7 |
 | |
 `---------'

We will use the ADC2 input that is connected from PORTF2 (PF2) to our LDR.

Let us first get the Butterfly to make a noise, then build upon that. Below is a program listing that
will produce a tone on the Butterfly internal speaker (A full explanation follows the listing):

.INCLUDE "M169DEF.INC"

.DEF A = R16

.DEF I = R21

.ORG $0000

RESET: LDI A,HIGH(RAMEND) ;SETUP THE STACK POINTER
 OUT SPH,A ;AT TOP OF MEMORY AND
 LDI A,LOW(RAMEND) ;GROW DOWNWARDS
 OUT SPL,A
 SBI DDRB,5 ;CONFIG SPEAKER PORT
MLUPE:

 RCALL BPAUSE ;WAIT
 SBI PINB,5 ;CLICK THE SPEAKER
 RJMP MLUPE ;DO IT AGAIN

 BPAUSE: ;PAUSE ROUTINE
BLOOP: LDI I,20 ;TIME DEPENDS ON "A"
BPLUPE: DEC I
 BRNE BPLUPE
 DEC A
 BRNE BLOOP
 RET

The .INCLUDE command tell the assembler to load in the definitions for the ATMega169 MCU
chip on the Butterfly. The following .DEF statements define the registers that we use:

.INCLUDE "M169DEF.INC"
 .DEF A = R16

.DEF I = R21

The .ORG command tell the assembler where in memory we wish to place oour program. Since we
are not using any interrupts we can start at the bottom of memory:

.ORG $0000

Next we tell the system to set up a stack at the top of memory, so we can use subroutines:

RESET: LDI A,HIGH(RAMEND) ;SETUP THE STACK POINTER
 OUT SPH,A ;AT TOP OF MEMORY AND
 LDI A,LOW(RAMEND) ;GROW DOWNWARDS
 OUT SPL,A

Before we can use the speaker on PORTB5, we have to configure it for output by writing a one to
its Data Direction Register (DDRB):

 SBI DDRB,5 ;CONFIG SPEAKER PORT

The main loop of the program calls a pause routine, then it toggles the ouput on PORTB5 which is
connected to the Butterfly speaker:

MLUPE:
 RCALL BPAUSE ;WAIT

 SBI PINB,5 ;CLICK THE SPEAKER
 RJMP MLUPE ;DO IT AGAIN

The pause routine is a loop within a loop that slows things down enough to a frequency that we can
hear through the speaker:

BPAUSE: ;PAUSE ROUTINE
BLOOP: LDI I,20 ;TIME DEPENDS ON "A"
BPLUPE: DEC I
 BRNE BPLUPE
 DEC A
 BRNE BLOOP
 RET

CHAPTER 2: WAIT FOR CONVERSION METHOD

Our strategy is to start an Analog-to-Digital Conversion on ADC2, then poll a flag that tells us when
the conversion is complete. Then we produce a sound on the speaker and pause for a length of time
that is determined by the value of voltage/resistance that was measured. The result is a changing
frequency of sound based on our input from the LDR:

The first addition to our program is to tell the ADC Multiplxer that we wish to read the LDR. The
data-sheets tell us that to select ADC3 we need to set the MUX to two:

 LDI A,0b0000_0010 ;SELECT INPUT 0=TEMP,2=LIGHT
 STS ADMUX,A

Here activate the pull-up resister by writing a one to PORTF3:

 SBI PORTF,PORTF3 ;INTIALIZE PORT F

The data-sheets tell us that the ADC works best at a frequency between 50Khz and 200 Khz. So we
select a pre-scaler/divider of sixteen because 2Mhz divided by sixteen give us a frequency of
125Khz. At the same time we set the ADEN bit to enable the ADC and we also set the ADSC bit to
start the conversion process:

MLUPE:
 LDI A,0b1100_0100 ;ENABLE, START & SET PRESCALER TO 16
 STS ADCSRA,A ;START ANALOG TO DIGITAL CONVERSION

When the conversion is complete the ADIF flag of ASCRA is set to one, so we wait for it with:

WAIT4:
 LDS A,ADCSRA ;WAIT FOR ADC CONVERSION TO COMPLETE
 ANDI A,0b001_0000 ;(1<<ADIF)
 BREQ WAIT4

Now that the conversion process is complete we read the results from the ADCL & ADCH registers.
The result is a ten bit number with its lowest eight bits in ADCL and the remaiing two bits in
ADCH, which we are going to ignore. ADCL must be read first followed by the ADCH to work
properly. We still have to read ADCH even though we don't use the result:

 LDS A, ADCL ;MUST READ ADCL BEFORE ADCH
 LDS AH, ADCH

After we make these additions to our program it becomes:

.INCLUDE "M169DEF.INC"

.DEF A = R16

.DEF AH = R17

.DEF I = R21

.ORG $0000

RESET: LDI A,HIGH(RAMEND) ;SETUP THE STACK POINTER
 OUT SPH,A ;AT TOP OF MEMORY AND
 LDI A,LOW(RAMEND) ;GROW DOWNWARDS
 OUT SPL,A
 SBI DDRB,5 ;CONFIG SPEAKER PORT

 LDI A,0b0000_0010 ;SELECT INPUT 0=TEMP,2=LIGHT
 STS ADMUX,A

 SBI PORTF,PORTF3 ;INTIALIZE PORT F

MLUPE:
 LDI A,0b1100_0100 ;ENABLE, START & SET PRESCALER TO 16
 STS ADCSRA,A ;START ANALOG TO DIGITAL CONVERSION
WAIT4:
 LDS A,ADCSRA ;WAIT FOR ADC CONVERSION
 ANDI A,0b001_0000 ;(1<<ADIF)
 BREQ WAIT4
 LDS A,ADCL ;MUST READ ADCL BEFORE ADCH
 LDS AH,ADCH

 RCALL BPAUSE ;WAIT
 SBI PINB,5 ;CLICK THE SPEAKER
 RJMP MLUPE ;DO IT AGAIN

BPAUSE: ;PAUSE ROUTINE
BLOOP: LDI I,10 ;TIME DEPENDS ON "A"
BPLUPE: DEC I
 BRNE BPLUPE
 DEC A
 BRNE BLOOP
 RET

If you programmed your Butterfly and connect the LDR as described. You can wave your hand over
the LDR and the speaker will produce a sound reminiscent of sci-fi movies of the 1950s.

As the amount of light hitting the LDR changes, the resistance of the LDR will change, causing the
voltage at our input to the ADC to shift. This voltage change will be converted into a digital value
by the ADC. We read this value into the "A" Register and produce a varying frequency to our output
speaker, by varying the length of time we spend in our PAUSE routine. The result is a musical
intrument that we control by waving our hand over the circuit.

CHAPTER 3: FREE RUNNING MODE

With the Free-Running Method, the ADC is set to self-trigger after each conversion. We don't wait
for the conversion to complete (and the ADIF Flag to be set). By reading the ADC output registers
in free-running mode, we can pick-up the conversion value from its most recent reading.

This time we turn on the ADC with the ADC Enable bit of the ADC Control and Status Register
(ADCSRA). We tell the system we want the Automatic Update by setting the ADATE bit, and we
start the conversion process by setting the ADCS bit. The lower two bit set our pre-scaler/divider to
divide-by-sixteen:

 LDI A,0b1110_0100 ;[ADEN,ADSC,ADATE,ADIF,_,ADIE,ADPS2,ADPS1,ADPS0]
 OUT ADCSRA,A ;START ANALOG TO DIGITAL CONVERSION

Since the ADC will run on its own, we remove the set-up of ADCSRA from the main lupe by
moving the MLUPE label down. We can eliminate the parts of our program that wait for the ADIF
flag to be set. After we remove that part of the code and make the above changes your program
should look like this:

.INCLUDE "M169DEF.INC"

.DEF A = R16

.DEF AH = R17

.DEF I = R21

.ORG $0000
 RJMP RESET

RESET: LDI A,HIGH(RAMEND) ;SETUP THE STACK POINTER
 OUT SPH,A ;AT TOP OF MEMORY AND
 LDI A,LOW(RAMEND) ;GROW DOWNWARDS
 OUT SPL,A
 SBI DDRB,5 ;CONFIG SPEAKER PORT

 LDI A,0b0000_0010 ;SELECT INPUT 0=TEMP,2=LIGHT
 STS ADMUX,A
 SBI PORTF,PORTF3 ;INTIALIZE PORT F
 LDI A,0b1110_0100 ;ENABLE, START & SET PRESCALER TO 16
 STS ADCSRA,A ;START ANALOG TO DIGITAL CONVERSION

MLUPE:
 LDS A, ADCL ;MUST READ ADCL BEFORE ADCH
 LDS AH, ADCH

 RCALL BPAUSE ;WAIT
 SBI PINB,5 ;CLICK THE SPEAKER
 RJMP MLUPE ;DO IT AGAIN

BPAUSE: ;PAUSE ROUTINE
BLOOP: LDI I,10 ;TIME DEPENDS ON "A"
BPLUPE: DEC I
 BRNE BPLUPE
 DEC A
 BRNE BLOOP
 RET

CHAPTER 4: THE LEFT ADJUSTED OUTPUT MODE

For this version, we are using the free-running mode but we have the system automatically left-shift
our result into the ADCH register. To put the system into left-shift mode we set the ADLAR bit of
the ADMUX Register to one. Note: the contents of the ADMUX Register only take effect AFTER
the ADC has been activated by the ADEN bit of the ADCSRA Register, so we place this part of our
code AFTER we set the ADCSRA Register:

 LDI A,0b0010_0010 ;SET TO LEFT SHIFT MODE & SELECT ADC #2 INPUT
 OUT ADMUX,A

In our previous versions of the program the ten-bit result was right shifted into the ADCL register
and the two high bits were stored in the ADCH register, which we never used. This time we are
going to have the result let-shifted into the ADCH register and ignore the lower two-bits of our ten-
bit conversion, which are stored in the ADCL register.

 ADCH: ADCL
PREVIOUSLY: [-,-,-,-,-,-,9,8] [7,6,5,4,3,2,1,0]
THIS TIME: [9,8,7,6,5,4,3,2] [1,0,-,-,-,-,-,-] <-- LEFT SHIFTED

So as you can see below, we read the low byte into A then we ignore the result and load the high
byte into A the result being the highest eight bits of our result ignoring the lowest two bits:

 IN A,ADCL ;MUST READ ADCL BEFORE ADCH
 IN A,ADCH ;

The results of these changes is the program below:

.INCLUDE "M169DEF.INC"

.DEF A = R16

.DEF I = R21

.ORG $0000
 RJMP RESET

RESET: LDI A,HIGH(RAMEND) ;SETUP THE STACK POINTER
 OUT SPH,A ;AT TOP OF MEMORY AND
 LDI A,LOW(RAMEND) ;GROW DOWNWARDS
 OUT SPL,A
 SBI DDRB,5 ;CONFIG SPEAKER PORT

 LDI A,0b0010_0010 ;SELECT INPUT 0=TEMP,2=LIGHT
 STS ADMUX,A
 SBI PORTF,PORTF3 ;INTIALIZE PORT F
 LDI A,0b1110_0100 ;ENABLE, START & SET PRESCALER TO 16
 STS ADCSRA,A ;START ANALOG TO DIGITAL CONVERSION

MLUPE:
 LDS A, ADCL ;MUST READ ADCL BEFORE ADCH
 LDS A, ADCH ;WE USE THE RESULT IN ADCH

 RCALL BPAUSE ;WAIT
 SBI PINB,5 ;CLICK THE SPEAKER
 RJMP MLUPE ;DO IT AGAIN

BPAUSE: ;PAUSE ROUTINE
BLOOP: LDI I,10 ;TIME DEPENDS ON "A"
BPLUPE: DEC I
 BRNE BPLUPE
 DEC A
 BRNE BLOOP
 RET

You should notice a change in tone since the reading we are taking now drops the two lowest bits.

CHAPTER 5: THE INTERRUPT METHOD

This time we are going to read the results and generate a sound from inside an interrupt routine that
is called automatically as each conversion is complete. This leaves the system free to do other tasks.
For this example the main loop of the program does nothing but jump to itself:

RLOOP: RJMP RLOOP

When interrupts are enabled with the SEI command, they system looks to the bottom of memory
.ORG $0000 for a jump table to the various interrupts. The power-on/reset jump vector is the first
one at .ORG $0000 to we point it to our main program.

.ORG $0000
 RJMP RESET

If we consult the data-sheet we find that the interrupt vector for the ADC is located at $0026, so we
put a jump to our interrupt routine there:

.ORG $0026
 RJMP ANA_CONV

And we tell the system to enable interrupts with the Set Enable Interrup command SEI:

 SEI ;ENABLE INTERRUPTS GLOBALLY

Now we are going to set the ADC Status & Control Register the same as last time except we are
going to set the ADC Interupt Enable bit ADIE to one also. This means the ADC Enable bit ADEN
is set; the ADC Start Conversion bit ADSC is set; the Automatic Update bit ADATE is set; the ADC
Interupt Enable ADIE bit is set; and the pre-scaler/divider is set to divide-by-sixteen:

 LDI A,0b1110_1100 ;[ADEN,ADSC,ADATE,ADIF,_,ADIE,ADPS2,ADPS1,ADPS0]
 OUT ADCSRA,A ;START ANALOG TO DIGITAL CONVERSION

When we service an interrupt with an interrupt routine, it is good practice to save off the system
status and the value of any registers that we use. Here we save the system status and contents of "A"
register on the stack and later restore them.

ANA_CONV:
 PUSH A ;SAVE CONTENTS OF "A" REGISTER FOR RESTORE
 PUSH AH ;SAVE CONTENTS OF "AH" REGISTER
 IN A,SREG ;SAVE THE SYSTEM STATUS FOR RESTORE
 PUSH A

In the heart of our interrupt routine we read the results of the ADC conversion by reading the lower
byte ADCL followed by the high byte ADCH. Then we call the PAUSE routine, followed by
toggling our output bit connected to our speaker:

 IN A,ADCL ;MUST READ ADCL BEFORE ADCH
 IN AH,ADCH ;REQUIRED, THOUGH NOT USED
 RCALL PAUSE ;VARIABLE TIME DELAY BASED ON A
 SBI PINB,0 ;TOGGLE SPEAKER ON PORTB0

After restoring the registers by popping them from the stack, we end our interrupt routine with a
Return from Interrupt command RETI:

 POP A ;RESTORE SYSTEM STATUS
 OUT SREG,A
 POP AH ;RESTORE "AH" RESGISTER

 POP A ;RESTORE "A" REGISTER
 RETI

After making these changes our complete program becomes:

.INCLUDE "M169DEF.INC"

.DEF A = R16

.DEF AH = R17

.DEF I = R21

.ORG $0000
 RJMP RESET
.ORG $0026
 RJMP ANA_CONV

RESET: LDI A,HIGH(RAMEND) ;SETUP THE STACK POINTER
 OUT SPH,A ;AT TOP OF MEMORY AND
 LDI A,LOW(RAMEND) ;GROW DOWNWARDS
 OUT SPL,A
 SBI DDRB,5 ;CONFIG SPEAKER PORT

 LDI A,0b0010_0010 ;SELECT INPUT 0=TEMP,2=LIGHT
 STS ADMUX,A
 SBI PORTF,PORTF3 ;INTIALIZE PORT F
 LDI A,0b1110_1100 ;ENABLE, START & SET PRESCALER TO 16
 STS ADCSRA,A ;START ANALOG TO DIGITAL CONVERSION
 SEI ;ACTIVATE INTERRUPTS GLOBALLY

RLUPE: RJMP RLUPE ;DO NOTHING LOOP

ANA_CONV:
 PUSH A ;SAVE OFF REGISTERS
 PUSH AH ;TO STACK
 IN A,SREG

 PUSH A
 LDS A, ADCL ;MUST READ ADCL BEFORE ADCH

 LDS A, ADCH ;WE USE THE RESULT IN ADCH
 RCALL BPAUSE ;WAIT
 SBI PINB,5 ;CLICK THE SPEAKER

 POP A ;RESTORE REGISTERS
 OUT SREG,A
 POP AH
 POP A

 RETI ;RETURN FROM INTERRUPT

BPAUSE: ;PAUSE ROUTINE
BLOOP: LDI I,10 ;TIME DEPENDS ON "A"
BPLUPE: DEC I
 BRNE BPLUPE
 DEC A
 BRNE BLOOP
 RET

